Units of ring spectra, orientations, and Thom spectra via rigid infinite loop space theory

被引:38
作者
Ando, Matthew [1 ]
Blumberg, Andrew J. [2 ]
Gepner, David [3 ]
Hopkins, Michael J. [4 ]
Rezk, Charles [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[4] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
COHOMOLOGY; HOMOLOGY;
D O I
10.1112/jtopol/jtu009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the theory of Thom spectra and the associated obstruction theory for orientations in order to support the construction of the E-infinity string orientation of tmf, the spectrum of topological modular forms. Specifically, we show that, for an E-infinity ring spectrum A, the classical construction of gl(1)A, the spectrum of units, is the right adjoint of the functor Sigma(infinity)(+)Omega(infinity): ho(connective spectra) -> ho(E-infinity ring spectra). To a map of spectra f : b -> bgl(1)A, we associate an E-infinity A-algebra Thom spectrum Mf, which admits an E-infinity A-algebra map to R if and only if the composition b -> bgl(1)A -> bgl(1)R is null; the classical case developed by May, Quinn, Ray, and Tornehave arises when A is the sphere spectrum. We develop the analogous theory for A(infinity) ring spectra: if A is an A(infinity) ring spectrum, then to a map of spaces f : B -> BGL(1)A, we associate an A-module Thom spectrum Mf, which admits an R-orientation if and only if B -> BGL(1)A -> BGL(1)R is null. Our work is based on a new model of the Thom spectrum as a derived smash product.
引用
收藏
页码:1077 / 1117
页数:41
相关论文
共 37 条
[1]   An ∞-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology [J].
Ando, Matthew ;
Blumberg, Andrew J. ;
Gepner, David ;
Hopkins, Michael J. ;
Rezk, Charles .
JOURNAL OF TOPOLOGY, 2014, 7 (03) :869-893
[2]  
Ando M, 2010, P SYMP PURE MATH, V81, P27
[3]  
[Anonymous], 2010, PREPRINT
[4]  
[Anonymous], 1995, Asterisque
[5]   Homology and cohomology of E∞ ring spectra [J].
Basterra, M ;
Mandell, MA .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) :903-944
[6]   Axiomatic homotopy theory for operads [J].
Berger, C ;
Moerdijk, I .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :805-831
[7]  
Blumberg A. J., 2005, THESIS U CHICAGO
[8]   Topological Hochschild homology of Thom spectra and the free loop space [J].
Blumberg, Andrew J. ;
Cohen, Ralph L. ;
Schlichtkrull, Christian .
GEOMETRY & TOPOLOGY, 2010, 14 (02) :1165-1242
[9]  
Boardman J. M., 1973, Lecture Notes in Mathematics
[10]  
Cohen F., 1973, B AM MATH SOC, V79