Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

被引:14
|
作者
Khurana, Sanchit [1 ,2 ]
LaBarbera, Mark [1 ,2 ]
Fedkin, Mark V. [1 ]
Lvov, Serguei N. [1 ,2 ,3 ]
Abernathy, Harry [4 ]
Gerdes, Kirk [4 ]
机构
[1] Penn State Univ, Earth & Mineral Sci Energy Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
Solid oxide fuel cell; Liquid Metal Anode; Electrochemical Impedance Spectroscopy; Equivalent circuit modeling; Warburg impedance; Metal-air battery; REFERENCE ELECTRODE PLACEMENT; ELECTROCHEMICAL IMPEDANCE; DIRECT OXIDATION; DIFFUSION; SOFC; POLARIZATION; SPECTROSCOPY; CONVERSION; INTERFACE; OIL;
D O I
10.1016/j.jpowsour.2014.10.138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H-2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10(-3) cm(2) s(-1) at 700 degrees C, 2.3 10(-3) cm(2) s(-1) at 800 degrees C and 3.5 10(-3) cm(2) s(-1) at 900 degrees C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1049 / 1054
页数:6
相关论文
共 50 条
  • [41] Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells
    Xin Yang
    Zhihong Du
    Qian Zhang
    Zewei Lyu
    Shixue Liu
    Zhijing Liu
    Minfang Han
    Hailei Zhao
    International Journal of Minerals, Metallurgy and Materials, 2023, 30 : 1181 - 1189
  • [42] A Novel Approach to the Optimization of a Solid Oxide Fuel Cell Anode Using Evolutionary Algorithms
    Buchaniec, Szymon
    Sciazko, Anna
    Mozdzierz, Marcin
    Brus, Grzegorz
    IEEE ACCESS, 2019, 7 : 34361 - 34372
  • [43] Performance evaluation of solid oxide fuel cell with in-situ methane reforming
    Zhu, Tenglong
    Yang, Zhibin
    Han, Minfang
    FUEL, 2015, 161 : 168 - 173
  • [44] Effect of hydrogen and carbon dioxide on the performance of methane fueled solid oxide fuel cell
    Chen, Zhiyuan
    Bian, Liuzhen
    Wang, Lijun
    Chen, Ning
    Zhao, Hailei
    Li, Fushen
    Chou, KuoChih
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (18) : 7453 - 7463
  • [45] Effects of operating conditions on the performance of a micro-tubular solid oxide fuel cell (SOFC)
    Serincan, Mustafa Fazil
    Pasaogullari, Ugur
    Sammes, Nigel M.
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 414 - 422
  • [46] Performance Optimization and Selection of Operating Parameters for a Solid Oxide Fuel Cell Stack
    Wang, Shih-Bin
    Wu, Chih-Fu
    Liu, Syu-Fang
    Yuan, Ping
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2013, 10 (05):
  • [47] Improvement of anode performance by surface modification for solid oxide fuel cell running on hydrocarbon fuel
    Yoon, SP
    Han, J
    Nam, SW
    Lim, TH
    Hong, SA
    JOURNAL OF POWER SOURCES, 2004, 136 (01) : 30 - 36
  • [48] Effects of interface roughness on a liquid-Sb-anode solid oxide fuel cell
    Wang, Hongjian
    Shi, Yixiang
    Cai, Ningsheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (35) : 15379 - 15387
  • [49] Phase Stability of Perovskite Oxide Electrodes under Operating Condition in Solid Oxide Fuel Cell
    Lee, Jinsil
    Shin, Yonghun
    Kim, Taeyun
    Choi, Wooseon
    Jung, Min-Hyoung
    Kim, Young-Min
    Yoon, Kyung Joong
    Jeong, Hu Young
    Lee, Donghwa
    Joo, Jong Hoon
    CHEMISTRY OF MATERIALS, 2024, 36 (06) : 2933 - 2943
  • [50] Impedance simulation of a solid oxide fuel cell anode in time domain
    Mohammadi, R.
    Ghassemi, M.
    Barzi, Y. Mollayi
    Hamedi, M. H.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (10) : 3275 - 3288