Some aspects of fractional diffusion equations of single and distributed order

被引:150
作者
Mainardi, Francesco
Pagnini, Glanni
Gorenflo, Rudolf
机构
[1] Univ Bologna, Dept Phys, I-40126 Bologna, Italy
[2] Univ Bologna, Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[3] Ctr E Clementel, ENEA, Natl Agcy New Technol Energy & Environm, I-40129 Bologna, Italy
关键词
anomalous diffusion; fractional derivatives; integral transforms; Mellin-Barnes integrals; stochastic processes; asymptotic power laws;
D O I
10.1016/j.amc.2006.08.126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order beta epsilon (0, 1). The fundamental solution for the Cauchy problem is interpreted as a probability density of a self-similar non-Markovian stochastic process related to a phenomenon of sub-diffusion (the variance grows in time sub-linearly). A further generalization is obtained by considering a continuous or discrete distribution of fractional time derivatives of order less than one. Then the fundamental solution is still a probability density of a non-Markovian process that, however, is no longer self-similar but exhibits a corresponding distribution of time-scales. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 40 条
[1]  
Bagley R.L., 2000, International Journal of Applied Mathematics, V2, P865
[2]  
Bagley R.L., 2000, International Journal of Applied Mathematics, V2, P965
[3]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[4]  
Caputo M., 1969, Elasticitae dissipazione
[5]  
Caputo M., 1995, ANN U FERRARA SEZ 7, V41, P73, DOI [10.1007/BF02826009, DOI 10.1007/BF02826009]
[6]  
Caputo M., 2001, Fract. Calc. Appl. Anal., V4, P421
[7]  
Chechkin A., 2003, FRACT CALC APPL ANAL, V6, P259
[8]   Fractional Fokker-Planck equation for ultraslow kinetics [J].
Chechkin, AV ;
Klafter, J ;
Sokolov, IM .
EUROPHYSICS LETTERS, 2003, 63 (03) :326-332
[9]   Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
PHYSICAL REVIEW E, 2002, 66 (04) :7-046129
[10]  
ERDELYI A, 1953, HIGH TRANSCENDENTAL, V1, P206