Some aspects of fractional diffusion equations of single and distributed order

被引:144
作者
Mainardi, Francesco
Pagnini, Glanni
Gorenflo, Rudolf
机构
[1] Univ Bologna, Dept Phys, I-40126 Bologna, Italy
[2] Univ Bologna, Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[3] Ctr E Clementel, ENEA, Natl Agcy New Technol Energy & Environm, I-40129 Bologna, Italy
关键词
anomalous diffusion; fractional derivatives; integral transforms; Mellin-Barnes integrals; stochastic processes; asymptotic power laws;
D O I
10.1016/j.amc.2006.08.126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order beta epsilon (0, 1). The fundamental solution for the Cauchy problem is interpreted as a probability density of a self-similar non-Markovian stochastic process related to a phenomenon of sub-diffusion (the variance grows in time sub-linearly). A further generalization is obtained by considering a continuous or discrete distribution of fractional time derivatives of order less than one. Then the fundamental solution is still a probability density of a non-Markovian process that, however, is no longer self-similar but exhibits a corresponding distribution of time-scales. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 40 条
  • [1] Bagley R.L., 2000, International Journal of Applied Mathematics, V2, P865
  • [2] Bagley R.L., 2000, International Journal of Applied Mathematics, V2, P965
  • [3] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [4] Caputo M., 1969, Elasticitae dissipazione
  • [5] Caputo M., 1995, ANN U FERRARA SEZ 7, V41, P73, DOI [10.1007/BF02826009, DOI 10.1007/BF02826009]
  • [6] Caputo M., 2001, Fract. Calc. Appl. Anal., V4, P421
  • [7] Chechkin A., 2003, FRACT CALC APPL ANAL, V6, P259
  • [8] Fractional Fokker-Planck equation for ultraslow kinetics
    Chechkin, AV
    Klafter, J
    Sokolov, IM
    [J]. EUROPHYSICS LETTERS, 2003, 63 (03): : 326 - 332
  • [9] Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations
    Chechkin, AV
    Gorenflo, R
    Sokolov, IM
    [J]. PHYSICAL REVIEW E, 2002, 66 (04): : 7 - 046129
  • [10] ERDELYI A, 1953, HIGH TRANSCENDENTAL, V1, P206