Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries

被引:91
作者
Zhang, Haiqin [1 ]
Qu, Wenjie [1 ]
Chen, Nan [1 ]
Huang, Yongxin [1 ]
Li, Li [1 ,2 ]
Wu, Feng [1 ,2 ]
Chen, Renjie [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Electrolyte; Ionic liquid; High concentration; Lithium metal anode; LiTFSI; ANODE; BEHAVIOR; SURFACE; CAPACITY; LAYER;
D O I
10.1016/j.electacta.2018.07.231
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrolytes that possess both interfacial stability toward lithium metal anodes and compatibility with high voltage cathodes are required for high energy density batteries. Here a high concentration LiTFSI salt firstly dissolves in an ionic liquid Pyr1,3FSI. This electrolyte with synergetic effect of TFSI and FSI anions, which not only effectively suppresses lithium dendrite growth because of the highly concentrated solid electrolyte interphase film, but also beneficially improve the cycling performance of lithium batteries. Lithium plating/stripping tests reveal that the concentrated electrolyte has superior compatibility with a lithium metal anode than an electrolyte with low salt concentration. Furthermore, a lithium metal battery containing the electrolyte and a lithium cobalt oxide cathode achieves high coulombic efficiency and good cycling stability at 4.4 V and high temperature. These results indicate that the highly concentrated ionic liquid electrolyte is promising for use in lithium metal batteries. Published by Elsevier Ltd.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 43 条
[1]   Effects of High and Low Salt Concentration in Electrolytes at Lithium-Metal Anode Surfaces [J].
Camacho-Forero, Luis E. ;
Smith, Taylor W. ;
Balbuena, Perla B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (01) :182-194
[2]   Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries [J].
Chen, Nan ;
Dai, Yujuan ;
Xing, Yi ;
Wang, Lili ;
Guo, Cui ;
Chen, Renjie ;
Guo, Shaojun ;
Wu, Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (07) :1660-1667
[3]   Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries [J].
Chen, Renjie ;
Zhao, Yuanyuan ;
Li, Yuejiao ;
Ye, Yusheng ;
Li, Yajing ;
Wu, Feng ;
Chen, Shi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (10) :5142-5147
[4]   The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons [J].
Chen, Renjie ;
Qu, Wenjie ;
Guo, Xing ;
Li, Li ;
Wu, Feng .
MATERIALS HORIZONS, 2016, 3 (06) :487-516
[5]   An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries [J].
Chen, Renjie ;
Liu, Fan ;
Chen, Yan ;
Ye, Yusheng ;
Huang, Yongxin ;
Wu, Feng ;
Li, Li .
JOURNAL OF POWER SOURCES, 2016, 306 :70-77
[6]   Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Song, Wei-Li ;
Fan, Li-Zhen ;
Zhang, Qiang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (24)
[7]   Hybrid Hairy Nanoparticle Electrolytes Stabilizing Lithium Metal Batteries [J].
Choudhury, Snehashis ;
Agrawal, Akanksha ;
Wei, Shuya ;
Jeng, Emily ;
Archer, Lynden A. .
CHEMISTRY OF MATERIALS, 2016, 28 (07) :2147-2157
[8]  
dhernA M. N., 2011, J POWER SOURCES, V196, P7700
[9]   Inorganic-Organic Ionic Liquid Electrolytes Enabling High Energy-Density Metal Electrodes for Energy Storage [J].
Forsyth, M. ;
Girard, G. M. A. ;
Basile, A. ;
Hilder, M. ;
MacFarlane, D. R. ;
Chen, F. ;
Howlett, P. C. .
ELECTROCHIMICA ACTA, 2016, 220 :609-617
[10]   Spectroscopic Characterization of the SEI Layer Formed on Lithium Metal Electrodes in Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolytes [J].
Girard, Gaetan M. A. ;
Hilder, Matthias ;
Dupre, Nicolas ;
Guyomard, Dominique ;
Nucciarone, Donato ;
Whitbread, Kristina ;
Zavorine, Serguei ;
Moser, Michael ;
Forsyth, Maria ;
MacFarlane, Douglas R. ;
Howlett, Patrick C. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (07) :6719-6729