Trend attention fully convolutional network for remaining useful life estimation

被引:46
|
作者
Fan, Linchuan [1 ,2 ]
Chai, Yi [1 ,2 ]
Chen, Xiaolong [2 ]
机构
[1] Minist Educ, Key Lab Complex Syst Safety & Control, 174 Shazheng St, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Automat, 174 Shazheng St, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life; Data-driven prognostic; Signal selection; Attention mechanism; Interpretability; PROGNOSTICS; PREDICTION;
D O I
10.1016/j.ress.2022.108590
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modern engineered systems usually employ multiple sensors to monitor equipment health status. However, most remaining useful life (RUL) estimation methods based on deep learning are hard to select helpful signals and remove useless signals accurately. Moreover, the attention mechanisms they employed could hardly obtain an optimal attention distribution at an acceptable computational cost, resulting in poor prediction performance. Therefore, we proposed a novel signal selection method, terming the "Loss boundary to Mapping ability" (LM) approach. It can accurately select the signals that can contribute to RUL prediction tasks. Then, inspired by the characteristics of RUL monitoring signals, we proposed a novel end-to-end framework called Trend attention Fully Convolutional Network (TaFCN) to enhance prediction performance further. These two methods constitute our prognostic method. We conducted a series of ablation experiments and comparative experiments with recent methods on the C-MAPSS turbofan engine dataset. The ablation experiments proved the necessity and advanced performance of the LM and the proposed attention mechanism employed in the TaFCN. The comparative experiments demonstrated the state-of-the-art performance of our prognostic method. Furthermore, we developed an interpretability analysis method, which revealed the logical reasoning process of our method.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Temporal convolutional attention network for remaining useful life estimation
    Liu L.
    Pei X.
    Lei X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08): : 2375 - 2386
  • [2] Multipath Temporal Convolutional Network for Remaining Useful Life Estimation
    Melendez-Vazquez, Ivan
    Doelling, Rolando
    Bringmann, Oliver
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4137 - 4146
  • [3] Multiscale Convolutional Attention Network for Predicting Remaining Useful Life of Machinery
    Wang, Biao
    Lei, Yaguo
    Li, Naipeng
    Wang, Wenting
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (08) : 7496 - 7504
  • [4] Temporal Convolutional Network with Attention Mechanism for Bearing Remaining Useful Life Prediction
    Wang, Shuai
    Zhang, Chao
    Lv, Da
    Zhao, Wentao
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 391 - 400
  • [5] Convolutional Transformer: An Enhanced Attention Mechanism Architecture for Remaining Useful Life Estimation of Bearings
    Ding, Yifei
    Jia, Minping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] Remaining Useful Life Estimation Based on a New Convolutional and Recurrent Neural Network
    Zhang, Xinyun
    Dong, Yan
    Wen, Long
    Lu, Fang
    Li, Wei
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 317 - 322
  • [7] A new ensemble residual convolutional neural network for remaining useful life estimation
    Wen, Long
    Dong, Yan
    Gao, Liang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (02) : 862 - 880
  • [8] Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network
    Zhu, Jun
    Chen, Nan
    Peng, Weiwen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (04) : 3208 - 3216
  • [9] Temporal Convolutional Network Based Regression Approach for Estimation of Remaining Useful Life
    Li, Rongze
    Chu, Zhengtian
    Jin, Wangkai
    Wang, Yaohua
    Hu, Xiao
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [10] Remaining useful life prediction of bearings with attention-awared graph convolutional network
    Wei, Yupeng
    Wu, Dazhong
    ADVANCED ENGINEERING INFORMATICS, 2023, 58