Fabrication of diamond Schottky emitter array by using electrophoresis pre-treatment and hot-filament chemical vapor deposition

被引:7
作者
Tsai, Ching-Hsiang [1 ]
Ono, Takahito [1 ]
Esashi, Masayoshi [1 ]
机构
[1] Tohoku Univ, Grad Sch Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
diamond; Schottky emitter; electrophoresis; hot-filament chemical vapor deposition;
D O I
10.1016/j.diamond.2006.11.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the fabrication of multi-beam electron Schottky emitter array with integrated electron lenses. The integrated emitter array consists of boron-doped diamond heaters with a diamond tip, Si micro gate array and Si focusing lens array. The diamond film is selectively deposited using electrophoresis of diamond seed particles and a hot-filament chemical vapor deposition (HF-CVD) technique. The emitters, gate and lens array are electrically isolated from each other on a Pyrex glass substrate. The gate hole is 40 mu gm in diameter and situated below the emitters with a 20 mu m gap. Electron emission performance of the fabricated diamond emitter was characterized. As increasing the heating current into the heating element with the emitter, the emission current increases. When heating the diamond emitter at a voltage of 2.8 V, an emission current of 490 nA has been observed at an electric field of 0.36 V/mu m. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1398 / 1402
页数:5
相关论文
共 15 条
[1]   Schottky emitter using boron-doped diamond [J].
Bae, JH ;
Minh, PN ;
Ono, T ;
Esashi, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (03) :1349-1352
[2]  
Baik FS, 1999, DIAM RELAT MATER, V8, P2169, DOI 10.1016/S0925-9635(99)00185-5
[3]   Digital electrostatic electron-beam array lithography [J].
Baylor, LR ;
Lowndes, DH ;
Simpson, ML ;
Thomas, CE ;
Guillorn, MA ;
Merkulov, VI ;
Whealton, JH ;
Ellis, ED ;
Hensley, DK ;
Melechko, AV .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06) :2646-2650
[4]   Developing and using the field emitter as a high intensity electron source [J].
Charbonnier, F .
APPLIED SURFACE SCIENCE, 1996, 94-5 :26-43
[5]   Diamond field emission devices [J].
Davidson, JL ;
Kang, WP ;
Wisitsora-At, A .
DIAMOND AND RELATED MATERIALS, 2003, 12 (3-7) :429-433
[6]   Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy [J].
Diederich, L ;
Küttel, O ;
Aebi, P ;
Schlapbach, L .
SURFACE SCIENCE, 1998, 418 (01) :219-239
[7]   Full MEMS monolithic microcolumn for wafer-level arrayal [J].
Kim, H ;
Han, C ;
Kim, J ;
Kim, H ;
Chun, K .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (06) :2912-2916
[8]   Emission characteristic of diamond-tip field emitter arrays fabricated by transfer mold technique [J].
Kim, S ;
Ju, BK ;
Lee, YH ;
Park, BS ;
Baik, YJ ;
Lim, S ;
Oh, MH .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (02) :499-502
[9]   Field enhanced thermionic electron emission from sulfur doped nanocrystalline diamond films [J].
Köck, FAM ;
Garguilo, JM ;
Nemanich, RJ .
DIAMOND AND RELATED MATERIALS, 2005, 14 (3-7) :704-708
[10]   Field emission from chemical vapor deposited diamond and diamond-like carbon films: Investigations of surface damage and conduction mechanisms [J].
May, PW ;
Hohn, S ;
Ashfold, MNR ;
Wang, WN ;
Fox, NA ;
Davis, TJ ;
Steeds, JW .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (03) :1618-1625