Artificial Intelligence and Applications in PM&R

被引:21
作者
Anderson, Dustin [1 ]
机构
[1] Univ Colorado, Sch Med, Aurora, CO USA
关键词
Artificial Intelligence; Machine Learning; Big Data; Rehabilitation; Physiatry; PM&R; Data Science;
D O I
10.1097/PHM.0000000000001171
中图分类号
R49 [康复医学];
学科分类号
100215 ;
摘要
Artificial intelligence methods are being applied broadly in society and increasingly in health care and research. Machine learning, a subset of artificial intelligence, represents the study of algorithms that improve automatically with experience. This article provides a basic overview of artificial intelligence, machine learning categories, common applications in the business sphere, advantages and disadvantages of using this technology, and example applications in rehabilitation and other fields for contextual purposes. The study and implementation of machine learning and artificial intelligence can function to improve patient care and represents a burgeoning area of research.
引用
收藏
页码:E128 / E129
页数:2
相关论文
共 11 条
  • [1] Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks
    Burlina, Philippe M.
    Joshi, Neil
    Pekala, Michael
    Pacheco, Katia D.
    Freund, David E.
    Bressler, Neil M.
    [J]. JAMA OPHTHALMOLOGY, 2017, 135 (11) : 1170 - 1176
  • [2] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [3] Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
    Haenssle, H. A.
    Fink, C.
    Schneiderbauer, R.
    Toberer, F.
    Buhl, T.
    Blum, A.
    Kalloo, A.
    Hassens, A. Ben Hadj
    Thomas, L.
    Enk, A.
    Uhlmann, L.
    [J]. ANNALS OF ONCOLOGY, 2018, 29 (08) : 1836 - 1842
  • [4] Imaging-based enrichment criteria using deep learning algorithms for efficient clinical trials in mild cognitive impairment
    Ithapu, Vamsi K.
    Singh, Vikas
    Okonkwo, Ozioma C.
    Chappell, Richard J.
    Dowling, N. Maritza
    Johnson, Sterling C.
    [J]. ALZHEIMERS & DEMENTIA, 2015, 11 (12) : 1489 - 1499
  • [5] Embracing simplexity: the role of artificial intelligence in peri-procedural medical safety
    Patriarca, Riccardo
    Falegnami, Andrea
    Bilotta, Federico
    [J]. EXPERT REVIEW OF MEDICAL DEVICES, 2019, 16 (02) : 77 - 79
  • [6] The auditory P300-based single-switch brain-computer interface: Paradigm transition from healthy subjects to minimally conscious patients
    Pokorny, Christoph
    Klobassa, Daniela S.
    Pichler, Gerald
    Erlbeck, Helena
    Real, Ruben G. L.
    Kuebler, Andrea
    Lesenfants, Damien
    Habbal, Dina
    Noirhomme, Quentin
    Risetti, Monica
    Mattia, Donatella
    Mueller-Putz, Gernot R.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2013, 59 (02) : 81 - 90
  • [7] Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants
    Sanchez, Justin C.
    Mahmoudi, Babak
    DiGiovanna, Jack
    Principe, Jose C.
    [J]. NEURAL NETWORKS, 2009, 22 (03) : 305 - 315
  • [8] Humanoid Assessing Rehabilitative Exercises
    Simonov, M.
    Delconte, G.
    [J]. METHODS OF INFORMATION IN MEDICINE, 2015, 54 (02) : 114 - 121
  • [9] Artificial intelligence and machine learning | applications in musculoskeletal physiotherapy
    Tack, Christopher
    [J]. MUSCULOSKELETAL SCIENCE AND PRACTICE, 2019, 39 : 164 - 169
  • [10] Brain computer interfaces for neurorehabilitation - its current status as a rehabilitation strategy post-stroke
    van Dokkum, L. E. H.
    Ward, T.
    Laffont, I.
    [J]. ANNALS OF PHYSICAL AND REHABILITATION MEDICINE, 2015, 58 (01) : 3 - 8