Exploring the physiology and pathology of aging in the intestine of Drosophila melanogaster

被引:25
作者
Jasper, Heinrich [1 ]
机构
[1] Buck Inst Res Aging, Novato, CA 94945 USA
关键词
intestinal homeostasis; regeneration; Drosophila melanogaster; aging; MULTIPLE ORGAN DYSFUNCTION; STEM-CELL IDENTITY; IMMUNE HOMEOSTASIS; TISSUE HOMEOSTASIS; INNATE IMMUNITY; BACTERIAL-INFECTION; BARRIER DYSFUNCTION; GUT HOMEOSTASIS; DUAL OXIDASE; INFLAMMATION;
D O I
10.1080/07924259.2014.963713
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gastrointestinal tract, due to its role as a digestive organ and as a barrier between the exterior and interior milieus, is critically impacted by dietary, environmental, and inflammatory conditions that influence health and lifespan. Work in flies is now uncovering the multifaceted molecular mechanisms that control homeostasis in this tissue, and establishing its central role in health and lifespan of metazoans. The Drosophila intestine has thus emerged as a productive, genetically accessible model to study various aspects of the pathophysiology of aging. Studies in flies have characterized the maintenance of regenerative homeostasis, the development of immune senescence, the loss of epithelial barrier function, the decline in metabolic homeostasis, as well as the maintenance of epithelial diversity in this tissue. Due to its fundamental similarity to vertebrate intestines, it can be anticipated that findings obtained in this system will have important implications for our understanding of age-related changes in the human intestine. Here, I review recent studies exploring age-related changes in the fly intestine, and their insight into the regulation of health and lifespan of the animal.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 90 条
[1]   The Decapentaplegic morphogen gradient: from pattern formation to growth regulation [J].
Affolter, Markus ;
Basler, Konrad .
NATURE REVIEWS GENETICS, 2007, 8 (09) :663-674
[2]   Tissue Damage-Induced Intestinal Stem Cell Division in Drosophila [J].
Amcheslavsky, Alla ;
Jiang, Jin ;
Ip, Y. Tony .
CELL STEM CELL, 2009, 4 (01) :49-61
[3]   Synergy between bacterial infection and genetic predisposition in intestinal dysplasia [J].
Apidianakis, Yiorgos ;
Pitsouli, Chrysoula ;
Perrimon, Norbert ;
Rahme, Laurence .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (49) :20883-20888
[4]   Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage [J].
Auclair, Benoit A. ;
Benoit, Yannick D. ;
Rivard, Nathalie ;
Mishina, Yuji ;
Perreault, Nathalie .
GASTROENTEROLOGY, 2007, 133 (03) :887-896
[5]   Tissue-Resident Adult Stem Cell Populations of Rapidly Self-Renewing Organs [J].
Barker, Nick ;
Bartfeld, Sina ;
Clevers, Hans .
CELL STEM CELL, 2010, 7 (06) :656-670
[6]   The Critical Role of Metabolic Pathways in Aging [J].
Barzilai, Nir ;
Huffman, Derek M. ;
Muzumdar, Radhika H. ;
Bartke, Andrzej .
DIABETES, 2012, 61 (06) :1315-1322
[7]   Ageing and gut microbes: Perspectives for health maintenance and longevity [J].
Biagi, Elena ;
Candela, Marco ;
Turroni, Silvia ;
Garagnani, Paolo ;
Franceschi, Claudio ;
Brigidi, Patrizia .
PHARMACOLOGICAL RESEARCH, 2013, 69 (01) :11-20
[8]   JNK Activity in Somatic Stem Cells Causes Loss of Tissue Homeostasis in the Aging Drosophila Gut [J].
Biteau, Benoit ;
Hochmuth, Christine E. ;
Jasper, Heinrich .
CELL STEM CELL, 2008, 3 (04) :442-455
[9]   Maintaining Tissue Homeostasis: Dynamic Control of Somatic Stem Cell Activity [J].
Biteau, Benoit ;
Hochmuth, Christine E. ;
Jasper, Heinrich .
CELL STEM CELL, 2011, 9 (05) :402-411
[10]   EGF signaling regulates the proliferation of intestinal stem cells in Drosophila [J].
Biteau, Benoit ;
Jasper, Heinrich .
DEVELOPMENT, 2011, 138 (06) :1045-1055