Micro-Tubular Solid Oxide Fuel Cell Polarization and Impedance Variation With Thin Porous Samarium-Doped Ceria and Gadolinium-Doped Ceria Buffer Layer Thickness

被引:7
作者
Milcarek, Ryan J. [1 ]
Ahn, Jeongmin [2 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, 501 E Tyler Mall, Tempe, AZ 85287 USA
[2] Syracuse Univ, Dept Mech & Aerosp Engn, 255 Link Hall, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
micro-tubular solid oxide fuel cell (mT-SOFC); intermediate temperature solid oxide fuel cell; buffer layer; interlayer; anode-supported solid oxide fuel cell (AS-SOFC); fuel cells; STABILIZED ZIRCONIA ELECTROLYTE; FILM ELECTROLYTES; VAPOR-DEPOSITION; PERFORMANCE; CATHODE; SOFCS; FLAME; FABRICATION; INTERLAYER; STACK;
D O I
10.1115/1.4047742
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Porous buffer layers for anode-supported solid oxide fuel cells (SOFCs) have been investigated for many years with different thicknesses of the buffer layer in each study. In this work, micro-tubular SOFCs having samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) buffer layers are compared using the current-voltage technique, electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The thickness of the porous SDC and GDC buffer layer is investigated systematically with the thickness varying between 0.3 and 2.0 mu m. The power density varies between 212 and 1004 mW/cm(2) for samples having different SDC buffer layer thickness. Comparable changes occur for the SOFCs with a GDC buffer layer, but less variation in polarization losses resulted. Variation in electrochemical performance varies due to changes in ohmic resistance, cathode activation polarization, and interfacial reactions between the cathode and electrolyte materials.
引用
收藏
页数:7
相关论文
共 55 条
  • [1] Mixed-reactant, micro-tubular solid oxide fuel cells: An experimental study
    Akhtar, N.
    Decent, S. P.
    Loghin, D.
    Kendall, K.
    [J]. JOURNAL OF POWER SOURCES, 2009, 193 (01) : 39 - 48
  • [2] Experimental analysis of micro-tubular solid oxide fuel cell fed by hydrogen
    Calise, F.
    Restucccia, G.
    Sammes, N.
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (04) : 1163 - 1170
  • [3] Cathode electrolyte systems for solid oxide fuel cells fabricated using flame assisted vapour deposition technique
    Charojrochkul, S
    Choy, KL
    Steele, BCH
    [J]. SOLID STATE IONICS, 1999, 121 (1-4) : 107 - 113
  • [4] Nanoscaled Sm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells
    Chen, Dengjie
    Yang, Guangming
    Shao, Zongping
    Ciucci, Francesco
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2013, 35 : 131 - 134
  • [5] Efficiency of a dense thin CGO buffer layer for solid oxide fuel cell operating at intermediate temperature
    Constantin, G.
    Rossignol, C.
    Briois, P.
    Billard, A.
    Dessemond, L.
    Djurado, E.
    [J]. SOLID STATE IONICS, 2013, 249 : 98 - 104
  • [6] Microtubular SOFC anode optimisation for direct use on methane
    Dhir, A.
    Kendall, K.
    [J]. JOURNAL OF POWER SOURCES, 2008, 181 (02) : 297 - 303
  • [7] Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a cathode for IT SOFCs with a GDC interlayer
    Duan, Zaoshu
    Yang, Min
    Yan, Aiyu
    Hou, Zifang
    Dong, Yonglai
    Chong, You
    Cheng, Mojie
    Yang, Weishen
    [J]. JOURNAL OF POWER SOURCES, 2006, 160 (01) : 57 - 64
  • [8] The electrochemical cell temperature estimation of micro-tubular SOFCs during the power generation
    Hashimoto, S.
    Nishino, H.
    Liu, Y.
    Asano, K.
    Mori, M.
    Funahashi, Y.
    Fujishiro, Y.
    [J]. JOURNAL OF POWER SOURCES, 2008, 181 (02) : 244 - 250
  • [9] Micro-tubular solid oxide fuel cells and stacks
    Howe, Katie S.
    Thompson, Gareth J.
    Kendall, Kevin
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1677 - 1686
  • [10] Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dip-coating
    Hsieh, Wen-Shuo
    Lin, Pang
    Wang, Sea-Fue
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (06) : 2859 - 2867