Temporal Feature Selection for Time-series Prediction

被引:0
|
作者
Hido, Shohei [1 ]
Morimura, Tetsuro [1 ]
机构
[1] IBM Res Corp, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a feature selection method for multi-variate time-series prediction. It aims to use the best sliding window size and delay for each explanatory variable, which are usually fixed. The idea is to convert the original time-series into a set of cumulative sum with different length. The combinations of cumulative sum variables obtaining nonzero weights in sparse learning algorithms represent the optimal temporal effects from explanatory variables to the target variable. Experiments show that the method performs better than conventional methods in regression problems.
引用
收藏
页码:3557 / 3560
页数:4
相关论文
共 50 条
  • [1] Feature Selection for Time-Series Prediction in Case of Undetermined Estimation
    Sergii, Khmilovyi
    Yurii, Skobtsov
    Tatyana, Vasyaeva
    Natalia, Andrievskaya
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA) FOR YOUNG SCIENTISTS, 2016, 449 : 85 - 97
  • [2] Feature Selection in Time-Series Motion Databases
    Elain, Florian
    Mucherino, Antonio
    Hoyet, Ludovic
    Kulpa, Richard
    PROCEEDINGS OF THE 2018 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2018, : 245 - 248
  • [3] Evolutionary Feature Selection for Time-Series Forecasting
    Linares-Barrera, M. L.
    Jimenez-Navarro, M. J.
    Brito, I. Sofia
    Riquelme, J. C.
    Martinez-Ballesteros, M.
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 395 - 397
  • [4] Research on Ensemble Learning-Based Feature Selection Method for Time-Series Prediction
    Huang, Da
    Liu, Zhaoguo
    Wu, Dan
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [5] Time-Series Feature Selection for Solar Flare Forecasting
    Velanki, Yagnashree
    Hosseinzadeh, Pouya
    Boubrahimi, Soukaina Filali
    Hamdi, Shah Muhammad
    UNIVERSE, 2024, 10 (09)
  • [6] Feature selection for change detection in multivariate time-series
    Botsch, Michael
    Nossek, Josef A.
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 590 - 597
  • [7] Temporal Attention Signatures for Interpretable Time-Series Prediction
    Katrompas, Alexander
    Metsis, Vangelis
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VI, 2023, 14259 : 268 - 280
  • [8] Time-series Temporal Classification using Feature Ensemble Learning
    Liu, Ruoqian
    Murphey, Yi L.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [9] Chaotic Time Series Prediction with Feature Selection Evolution
    Landassuri-Moreno, V.
    Raymundo Marcial-Romero, J.
    Montes-Venegas, A.
    Ramos, Marco A.
    2011 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2011), 2011, : 71 - 76
  • [10] Interpretable clinical time-series modeling with intelligent feature selection for early prediction of antimicrobial multidrug resistance
    Martinez-Aguero, Sergio
    Soguero-Ruiz, Cristina
    Alonso-Moral, Jose M.
    Mora-Jimenez, Inmaculada
    Alvarez-Rodriguez, Joaquin
    Marques, Antonio G.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 133 : 68 - 83