Experimental Quantum-Enhanced Machine Learning in Spin-Based Systems

被引:4
作者
Wang, Xiangyu [1 ,2 ]
Lin, Zidong [1 ,2 ]
Che, Liangyu [1 ,2 ]
Chen, Hanyu [1 ,2 ]
Lu, Dawei [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
nitrogen-vacancy centers; nuclear magnetic resonance; quantum machine learning; spin qubits; SOLID-STATE SPIN; MAGNETIC-RESONANCE; SPECTROSCOPY; ENTANGLEMENT; MICROSCOPY; PROCESSOR; COHERENCE;
D O I
10.1002/qute.202200005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the advancement of computing power and algorithms, machine learning has been a powerful tool in numerous applications nowadays. However, the hardware limitation of classical computers and the increasing size of datasets urge the community to explore new techniques for machine learning. Quantum-enhanced machine learning is such a rapidly growing field. It refers to quantum algorithms that are implemented in quantum computers, which can improve the computational speed of classical machine learning tasks and often promises an exponential speedup. In the past few years, the development of experimental quantum technologies leads to many experimental demonstrations of quantum-enhanced machine learning in diverse physical systems. Here, the recent experimental progress in this field in two typical spin-based quantum systems-nuclear magnetic resonance and nitrogen-vacancy centers in diamond-is reviewed, and the ongoing challenges are discussed.
引用
收藏
页数:15
相关论文
共 96 条
  • [1] Agrawal Ajay, 2018, Prediction Machines: The Simple Economics of Artificial Intelligence
  • [2] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [3] Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors
    Awschalom, David D.
    Bassett, Lee C.
    Dzurak, Andrew S.
    Hu, Evelyn L.
    Petta, Jason R.
    [J]. SCIENCE, 2013, 339 (6124) : 1174 - 1179
  • [4] Sensitivity optimization for NV-diamond magnetometry
    Barry, John F.
    Schloss, Jennifer M.
    Bauch, Erik
    Turner, Matthew J.
    Hart, Connor A.
    Pham, Linh M.
    Walsworth, Ronald L.
    [J]. REVIEWS OF MODERN PHYSICS, 2020, 92 (01)
  • [5] A two-qubit photonic quantum processor and its application to solving systems of linear equations
    Barz, Stefanie
    Kassal, Ivan
    Ringbauer, Martin
    Lipp, Yannick Ole
    Dakic, Borivoje
    Aspuru-Guzik, Alan
    Walther, Philip
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [6] Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations
    Batalov, A.
    Zierl, C.
    Gaebel, T.
    Neumann, P.
    Chan, I. -Y.
    Balasubramanian, G.
    Hemmer, P. R.
    Jelezko, F.
    Wrachtrup, J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [7] Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision
    Berry, Dominic W.
    Childs, Andrew M.
    Ostrander, Aaron
    Wang, Guoming
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) : 1057 - 1081
  • [8] High-order quantum algorithm for solving linear differential equations
    Berry, Dominic W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (10)
  • [9] BLOCH F, 1946, PHYS REV, V70, P460, DOI 10.1103/PhysRev.70.460
  • [10] Brown T. B., 2020, P 34 INT C NEUR INF