3D visual saliency and convolutional neural network for blind mesh quality assessment

被引:22
|
作者
Abouelaziz, Ilyass [1 ]
Chetouani, Aladine [2 ]
El Hassouni, Mohammed [1 ,3 ]
Latecki, Longin Jan [4 ]
Cherifi, Hocine [5 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, LRIT, URAC 29, BP 1014 RP, Rabat, Morocco
[2] Univ Orleans, PRISME Lab, Orleans, France
[3] Mohammed V Univ Rabat, FLSHR, Rabat, Morocco
[4] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
[5] Univ Burgundy, LE2I, UMR 6306, CNRS, Dijon, France
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 21期
关键词
Mesh visual quality assessment; Mean opinion score; Mesh visual saliency; Convolutional neural network; METRICS; ERROR; COMPRESSION; MODEL;
D O I
10.1007/s00521-019-04521-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A number of full reference and reduced reference methods have been proposed in order to estimate the perceived visual quality of 3D meshes. However, in most practical situations, there is a limited access to the information related to the reference and the distortion type. For these reasons, the development of a no-reference mesh visual quality (MVQ) approach is a critical issue, and more emphasis needs to be devoted to blind methods. In this work, we propose a no-reference convolutional neural network (CNN) framework to estimate the perceived visual quality of 3D meshes. The method is called SCNN-BMQA (3D visual saliency and CNN for blind mesh quality assessment). The main contribution is the usage of a CNN and 3D visual saliency to estimate the perceived visual quality of distorted meshes. To do so, the CNN architecture is fed by small patches selected carefully according to their level of saliency. First, the visual saliency of the 3D mesh is computed. Afterward, we render 2D projections from the 3D mesh and its corresponding 3D saliency map. Then the obtained views are split into 2D small patches that pass through a saliency filter in order to select the most relevant patches. Finally, a CNN is used for the feature learning and the quality score estimation. Extensive experiments are conducted on four prominent MVQ assessment databases, including several tests to study the effect of the CNN parameters, the effect of visual saliency and comparison with existing methods. Results show that the trained CNN achieves good rates in terms of correlation with human judgment and outperforms the most effective state-of-the-art methods.
引用
收藏
页码:16589 / 16603
页数:15
相关论文
共 50 条
  • [31] On the use of a scanpath predictor and convolutional neural network for blind image quality assessment
    Chetouani, Aladine
    Li, Leida
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 89
  • [32] No-reference synthetic image quality assessment with convolutional neural network and local image saliency
    Xiaochuan Wang
    Xiaohui Liang
    Bailin Yang
    Frederick W. B. Li
    Computational Visual Media, 2019, 5 : 193 - 208
  • [33] No-reference synthetic image quality assessment with convolutional neural network and local image saliency
    Wang, Xiaochuan
    Liang, Xiaohui
    Yang, Bailin
    Li, Frederick W. B.
    COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) : 193 - 208
  • [34] Split liability assessment in car accident using 3D convolutional neural network
    Lee, Sungjae
    Lee, Yong-Gu
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (04) : 1579 - 1601
  • [35] Perceptual Quality Assessment for 3D Triangle Mesh Based on Curvature
    Dong, Lu
    Fang, Yuming
    Lin, Weisi
    Seah, Hock Soon
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (12) : 2174 - 2184
  • [36] MESH SALIENCY DETECTION USING CONVOLUTIONAL NEURAL NETWORKS
    Nousias, Stavros
    Arvanitis, Gerasimos
    Lalos, Aris S.
    Moustakas, Konstantinos
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [37] Visual Mesh Quality Assessment Using Weighted Network Representation
    El Hassouni, Mohammed
    Cherifi, Hocine
    COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 1, COMPLEX NETWORKS 2023, 2024, 1141 : 320 - 330
  • [38] WavNet - Visual saliency detection using Discrete Wavelet Convolutional Neural Network*
    Sasibhooshan, Reshmi
    Kumaraswamy, Suresh
    Sasidharan, Santhoshkumar
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 79
  • [39] 3D convolutional neural network for object recognition: a review
    Rahul Dev Singh
    Ajay Mittal
    Rajesh K. Bhatia
    Multimedia Tools and Applications, 2019, 78 : 15951 - 15995
  • [40] A GEOMETRIC CONVOLUTIONAL NEURAL NETWORK FOR 3D OBJECT DETECTION
    Lu, Yawen
    Guo, Qianyu
    Lu, Guoyu
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,