On generalized Hermite-Fejer interpolation of Lagrange type on the Chebyshev nodes

被引:1
作者
Byrne, GJ [1 ]
Mills, TM [1 ]
Smith, SJ [1 ]
机构
[1] La Trobe Univ, Div Math, Bendigo, Vic 3552, Australia
关键词
D O I
10.1006/jath.2000.3469
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For f is an element of C [-1, 1], let H-m,H-n(f, x) denote the (0, 1,..., m) Hermite-Fejer (HF) interpolation polynomial off based on the Chebyshev nodes. That is, H-m,H-n(f, x) is the polynomial of least degree which interpolates f(x) and has it:; first m derivatives vanish at each of the zeros of the nth Chebyshev polynomial of the first kind, in this paper a precise pointwise estimate for the approximation error \H-2m,H-n(f, x) -f(x)\ is developed, and an equiconvergence result for Lagrange and (0, 1,..., 2m) HF interpolation on the Chebyshev nodes is obtained. This equiconvergence result is then used to show that a rational interpolatory process, obtained by combining the divergent Lagrange and (0,1,...,2m) HF interpolation methods on the Chebyshev nodes, is convergent for all f is an element of C[ -1, 1]. (C) 2000 Academic Press.
引用
收藏
页码:263 / 278
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1916, G TTINGEN NACHRICHTE
[2]   ON HERMITE-FEJER TYPE INTERPOLATION ON THE CHEBYSHEV NODES [J].
BYRNE, GJ ;
MILLS, TM ;
SMITH, SJ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 47 (01) :13-24
[3]   THE LEBESGUE CONSTANT FOR HIGHER-ORDER HERMITE-FEJER INTERPOLATION ON THE CHEBYSHEV NODES [J].
BYRNE, GJ ;
MILLS, TM ;
SMITH, SJ .
JOURNAL OF APPROXIMATION THEORY, 1995, 81 (03) :347-367
[4]  
BYRNE GJ, IN PRESS J AUSTR M B
[5]  
FABER G., 1914, JAHRESBER DTSCH MATH, V23, P190
[6]   A NEW ESTIMATE FOR THE APPROXIMATION OF FUNCTIONS BY HERMITE-FEJER INTERPOLATION POLYNOMIALS [J].
GOODENOUGH, SJ ;
MILLS, TM .
JOURNAL OF APPROXIMATION THEORY, 1981, 31 (03) :253-260
[7]  
KIS O, 1968, ANN U SCI BUDAP, V11, P27
[8]   GENERAL HERMITE TRIGONOMETRIC INTERPOLATION [J].
KRESS, R .
NUMERISCHE MATHEMATIK, 1972, 20 (02) :125-&
[9]  
MEIR A, 1978, CANAD MATH B, V21, P197
[10]  
Rivlin T. J., 2020, Chebyshev Polynomials