Multimedia Data-Based Artificial Pancreas for Type 2 Diabetes

被引:1
作者
Keshary, Shivom [1 ]
Padmapritha, T. [1 ]
Bekiroglu, Korkut [2 ]
Seshadhri, Subathra [1 ]
Srinivasan, Seshadhri [3 ]
机构
[1] Kalasalingam Acad Res & Educ, Krishnan Kovil 626126, India
[2] SUNY Polytech Inst, Utica, NY 13502 USA
[3] GE Res Ctr, Bangalore 560048, Karnataka, India
关键词
Glucose; Insulin; Blood; Computational modeling; Data models; Diabetes; Older adults; Artificial biological organs; Pancreas; Personalization; multimedia data; artificial pancreas; type; 2; diabetes; MODEL-PREDICTIVE CONTROL; SYSTEMS;
D O I
10.1109/MMUL.2022.3154534
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An artificial pancreases (AP) is a device for managing diabetes through automated insulin infusion. The control algorithm is the heart of the AP that computes the insulin infusion based on blood glucose measurements. In this article, we investigate the role of multimedia data to enable the advanced control techniques that could personalize AP in elderly type 2 diabetes patients. The performance is evaluated through in silico studies on a patient simulator wherein the patient model is computed based on the data collected from clinical studies.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 18 条
[1]   Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men [J].
Anderson, GH ;
Catherine, NLA ;
Woodend, DM ;
Wolever, TMS .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2002, 76 (05) :1023-1030
[2]   Adaptive-learning model predictive control for complex physiological systems: Automated insulin delivery in diabetes [J].
Askari, Mohammad Reza ;
Hajizadeh, Iman ;
Rashid, Mudassir ;
Hobbs, Nicole ;
Zavala, Victor M. ;
Cinar, Ali .
ANNUAL REVIEWS IN CONTROL, 2020, 50 (1-12) :1-12
[3]   Advances in artificial pancreas systems [J].
Boughton, Charlotte K. ;
Hovorka, Roman .
SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (484)
[4]   A Review of the Current Challenges Associated with the Development of an Artificial Pancreas by a Double Subcutaneous Approach [J].
Christiansen, Sverre Christian ;
Fougner, Anders Lyngvi ;
Stavdahl, Oyvind ;
Kolle, Konstanze ;
Ellingsen, Reinold ;
Carlsen, Sven Magnus .
DIABETES THERAPY, 2017, 8 (03) :489-506
[5]  
Cinar Ali, 2019, Diabetes Spectr, V32, P209, DOI [10.2337/ds18-0100, 10.2337/ds18-0100]
[6]   CNN-based features for retrieval and classification of food images [J].
Ciocca, Gianluigi ;
Napoletano, Paolo ;
Schettini, Raimondo .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 176 :70-77
[7]  
Eberle R., 2020, THESIS U ARKANSAS
[8]  
Hajizadeh Iman, 2018, J Diabetes Sci Technol, V12, P953, DOI [10.1177/1932296818789951, 10.1177/1932296818789951]
[9]   Model predictive control with integral action for artificial pancreas [J].
Incremona, Gian Paolo ;
Messori, Mirko ;
Toffanin, Chiara ;
Cobelli, Claudio ;
Magni, Lalo .
CONTROL ENGINEERING PRACTICE, 2018, 77 :86-94
[10]   The Do-It-Yourself Artificial Pancreas: A Comprehensive Review [J].
Kesavadev, Jothydev ;
Srinivasan, Seshadhri ;
Saboo, Banshi ;
Krishna, Meera B. ;
Krishnan, Gopika .
DIABETES THERAPY, 2020, 11 (06) :1217-1235