Thermal conductivity of single-walled carbon nanotubes

被引:75
作者
Savin, Alexander V. [1 ,2 ]
Hu, Bambi [3 ,4 ,5 ]
Kivshar, Yuri S. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[2] Russian Acad Sci, NN Semenov Chem Phys Inst, Moscow 119991, Russia
[3] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Hong Kong, Hong Kong, Peoples R China
[5] Univ Houston, Dept Phys, Houston, TX 77204 USA
基金
澳大利亚研究理事会;
关键词
ballistic transport; carbon nanotubes; heat transfer; molecular dynamics method; phonons; potential energy functions; thermal conductivity; MOLECULAR-DYNAMICS SIMULATION; HEAT-CONDUCTION; SOLITONS;
D O I
10.1103/PhysRevB.80.195423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study numerically the thermal conductivity of single-walled carbon nanotubes for the cases of an isolated nanotube and a nanotube interacting with a substrate. We employ two different numerical methods: (i) direct modeling of the heat transfer by molecular-dynamics simulations and (ii) analysis of the equilibrium dynamics by means of the Green-Kubo formalism. For the numerical modeling of the effective interatomic interactions, we employ both the Brenner potentials and the intermolecular potentials used in the study of the dynamics of large macromolecules. We demonstrate that, quite independently of the methods employed and the potentials used, the character of the thermal conductivity depends crucially on the interaction between a nanotube and a substrate. While an isolated nanotube demonstrates anomalous thermal conductivity due to ballistic transport of long-wave acoustic phonons, the nanotube interacting with a flat substrate displays normal thermal conductivity due to both the appearance of a gap in the frequency spectrum of acoustic phonons and the absorption of long-wave acoustic phonons by the substrate. We study the dependence of the thermal conductivity on chirality, radius, and temperature of the single-walled carbon nanotubes in both the regimes and compare our findings with experimental data and earlier theoretical results for the thermal conductivity.
引用
收藏
页数:20
相关论文
共 63 条
  • [51] Diffusive-Ballistic Heat Conduction of Carbon Nanotubes and Nanographene Ribbons
    Shiomi, Junichiro
    Maruyama, Shigeo
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2010, 31 (10) : 1945 - 1951
  • [52] ATOMISTIC DYNAMICS OF MACROMOLECULAR CRYSTALS
    SUMPTER, BG
    NOID, DW
    LIANG, GL
    WUNDERLICH, B
    [J]. ATOMISTIC MODELING OF PHYSICAL PROPERTIES, 1994, 116 : 27 - 72
  • [53] Carbon nanotube thermal transport: Ballistic to diffusive
    Wang, JA
    Wang, JS
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (11)
  • [54] Length-dependent thermal conductivity of an individual single-wall carbon nanotube
    Wang, Zhao Liang
    Tang, Da Wei
    Li, Xiao Bo
    Zheng, Xing Hua
    Zhang, Wei Gang
    Zheng, Li Xin
    Zhu, Yuntian T.
    Jin, Ai Zi
    Yang, Hai Fang
    Gu, Chang Zhi
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (12)
  • [55] Anomalous heat conduction in a carbon nanowire: Molecular dynamics calculations
    Wu, G
    Dong, JM
    [J]. PHYSICAL REVIEW B, 2005, 71 (11)
  • [56] Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations
    Wu, Gang
    Li, Baowen
    [J]. PHYSICAL REVIEW B, 2007, 76 (08)
  • [57] Thermal conductivity of multiwalled carbon nanotubes
    Yang, DJ
    Zhang, Q
    Chen, G
    Yoon, SF
    Ahn, J
    Wang, SG
    Zhou, Q
    Wang, Q
    Li, JQ
    [J]. PHYSICAL REVIEW B, 2002, 66 (16) : 1 - 6
  • [58] Thermal conduction of carbon nanotubes using molecular dynamics
    Yao, ZH
    Wang, JS
    Li, BW
    Liu, GR
    [J]. PHYSICAL REVIEW B, 2005, 71 (08)
  • [59] Linear specific heat of carbon nanotubes
    Yi, W
    Lu, L
    Zhang, DL
    Pan, ZW
    Xie, SS
    [J]. PHYSICAL REVIEW B, 1999, 59 (14) : R9015 - R9018
  • [60] Thermal conductance and thermopower of an individual single-wall carbon nanotube
    Yu, CH
    Shi, L
    Yao, Z
    Li, DY
    Majumdar, A
    [J]. NANO LETTERS, 2005, 5 (09) : 1842 - 1846