Bio-reductive dechlorination of 1,1,1-trichloroethane and chloroform using a hydrogen-based membrane biofilm reactor

被引:36
作者
Chung, Jinwook
Rittmann, Bruce E.
机构
[1] Samsung Engn Co Ltd, Yongin 449844, Gyeonggi, South Korea
[2] Arizona State Univ, Biodesign Inst, Ctr Environm Biotechnol, Tempe, AZ 85287 USA
关键词
bio-reductive dechlorination; chloroform; hydrogen; membrane biofilm reactor; sulfate; 1,1,1-trichloroethane;
D O I
10.1002/bit.21212
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A H-2-based, denitrifying and sulfate-reducing membrane biofilm reactor (MBfR) was effective for removing 1,1,1-trichloroethane (TCA) and chloroform (CF) by reductive dechlorination. When either TCA or CF was first added to the MBfR, reductive dechlorination took place immediately and then increased over 3 weeks suggesting enrichment for TCA- or CF-dechlorinating bacteria. Increasing the H-2 pressure increased the dechlorination rates of TCA or CF, and it also increased the rate of sulfate reduction. Increased sulfate loading allowed more sulfate reduction, and this competed with reductive dechlorination, particularly the second steps. The acceptor flux normalized by effluent concentration can be an efficient indicator to gauge the intrinsic kinetics of the MBfR biofilms for the different reduction reactions. The analysis of normalized rates showed that the kinetics for reductive-dechlorination reactions were slowed by reduced H-2 bio-availability caused by a low H-2 pressure or competition from sulfate reduction.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 70 条
[61]  
*US EPA OFF WAT, 1995, 811F95004T US EPA OF
[62]  
*US EPA OFF WAT, 2004, NAT PRIM DRINK WAT R
[63]   DEGRADATION OF HALOGENATED ALIPHATIC-COMPOUNDS BY THE AMMONIA-OXIDIZING BACTERIUM NITROSOMONAS-EUROPAEA [J].
VANNELLI, T ;
LOGAN, M ;
ARCIERO, DM ;
HOOPER, AB .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (04) :1169-1171
[64]  
Vogel T. M., 1994, Handbook of bioremediation., P201
[65]   ABIOTIC AND BIOTIC TRANSFORMATIONS OF 1,1,1-TRICHLOROETHANE UNDER METHANOGENIC CONDITIONS [J].
VOGEL, TM ;
MCCARTY, PL .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1987, 21 (12) :1208-1213
[66]   Gas partitioning of dissolved volatile organic compounds in the vadose zone: Principles, temperature effects and literature review [J].
Washington, JW .
GROUND WATER, 1996, 34 (04) :709-718
[67]  
WESTRICK JJ, 1984, J AM WATER WORKS ASS, V76, P52
[68]  
WHITAKER AM, 1965, ANESTH ANAL CURR RES, V44, P60
[69]   A MODEL FOR THE EFFECTS OF PRIMARY SUBSTRATES ON THE KINETICS OF REDUCTIVE DEHALOGENATION [J].
WRENN, BA ;
RITTMANN, BE .
BIODEGRADATION, 1995, 6 (04) :295-308
[70]   Evaluation of a model for the effects of substrate interactions on the kinetics of reductive dehalogenation [J].
Wrenn, BA ;
Rittmann, BE .
BIODEGRADATION, 1996, 7 (01) :49-64