Master equation approach to finding the rate-limiting steps in biopolymer folding

被引:14
|
作者
Zhang, WB [1 ]
Chen, SJ
机构
[1] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2003年 / 118卷 / 07期
关键词
D O I
10.1063/1.1538596
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A master equation approach is developed to find the rate-limiting steps in biopolymer folding, where the folding kinetics is described as a linear combination of basic kinetic modes determined from the eigenvalues and eigenvectors of the rate matrix. Because the passage of a rate-limiting step is intrinsically related to the folding speed, it is possible to probe and to identify the rate-limiting steps through the folding from different unfolded initial conformations. In a master equation approach, slow and fast folding speeds are directly correlated to the large and small contributions of the (rate-limiting) slow kinetic modes. Because the contributions from the slow modes can be computed from the corresponding eigenvectors, the rate-limiting steps can be identified from the eigenvectors of the slow modes. Our rate-limiting searching method has been tested for a simplified hairpin folding kinetics model, and it may provide a general transition state searching method for biopolymer folding. (C) 2003 American Institute of Physics.
引用
收藏
页码:3413 / 3420
页数:8
相关论文
共 50 条