Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide

被引:127
作者
Guan, Fang-Lan [1 ]
Gui, Chen-Xi [1 ]
Zhang, Hao-Bin [1 ]
Jiang, Zhi-Guo [1 ]
Jiang, Yue [1 ]
Yu, Zhong-Zhen [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-matrix composites (PMCs); Thermosetting resin; Thermal properties; PHENOL-FORMALDEHYDE COMPOSITES; POLYMER NANOCOMPOSITES; GRAPHITE NANOPLATELETS; CARBON NANOTUBES; EPOXY COMPOSITES; BORON-NITRIDE; MULTILAYER GRAPHENE; INTERFACE MATERIAL; CONE CALORIMETER; HYBRID FILLER;
D O I
10.1016/j.compositesb.2016.04.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermally conductive epoxy composites with eco-friendly flame retardancy are prepared by using spherical alumina (Al2O3), magnesium hydroxide and graphene nanoplatelets (GNPs) as thermally conductive fillers. Highly filled alumina particles do not seriously increase the viscosity of the epoxy monomer due to their spherical shape and smooth surface and thus the compounding keeps a good processibility; The incorporation of small amounts of layered GNPs efficiently increases the thermal conductivity of epoxy/Al2O3 composites because of the synergistic effect between layered GNPs and spherical Al2O3 on forming a thermally conductive network within epoxy matrix. Interestingly, the addition of a small amount of eco-friendly magnesium hydroxide endows the thermally conductive epoxy composites with a satisfactory flame retardancy. The epoxy composite with 68% Al2O3, 7% modified GNPs (m-GNPs) and 5% magnesium hydroxide is determined as the optimum composition with a high thermal conductivity of 2.2 W/(mK), 11 times of that of neat epoxy. Its satisfactory flame retardancy is confirmed by the high limiting oxygen index of 39% and UL-94 rating of V-0 with no dripping. The compact, dense and uniform char layers derived from well-disperSed m-GNPs act as efficient barrier layers and contribute to the flame retardant properties of the epoxy composites. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 140
页数:7
相关论文
共 51 条
[1]   Study on thermal performance of high power LED employing aluminum filled epoxy composite as thermal interface material [J].
Anithambigai, P. ;
Shanmugan, S. ;
Mutharasu, D. ;
Zahner, T. ;
Lacey, D. .
MICROELECTRONICS JOURNAL, 2014, 45 (12) :1726-1733
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   An adaptive multiscale method for quasi-static crack growth [J].
Budarapu, Pattabhi R. ;
Gracie, Robert ;
Bordas, Stephane P. A. ;
Rabczuk, Timon .
COMPUTATIONAL MECHANICS, 2014, 53 (06) :1129-1148
[4]   Improved Thermal Conductivity and Flame Retardancy in Polystyrene/Poly(vinylidene fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles [J].
Cao, Jian-Ping ;
Zhao, Xiaodong ;
Zhao, Jun ;
Zha, Jun-Wei ;
Hu, Guo-Hua ;
Dang, Zhi-Min .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) :6915-6924
[5]   Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites [J].
Chatterjee, S. ;
Nafezarefi, F. ;
Tai, N. H. ;
Schlagenhauf, L. ;
Nueesch, F. A. ;
Chu, B. T. T. .
CARBON, 2012, 50 (15) :5380-5386
[6]   Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers [J].
Choi, Seran ;
Kim, Jooheon .
COMPOSITES PART B-ENGINEERING, 2013, 51 :140-147
[7]   Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene [J].
Dittrich, Bettina ;
Wartig, Karen-Alessa ;
Hofmann, Daniel ;
Muelhaupt, Rolf ;
Schartel, Bernhard .
POLYMER DEGRADATION AND STABILITY, 2013, 98 (08) :1495-1505
[8]   Thermal conductivity determination of conductor/insulator composites by fractal: Geometrical tortuosity and percolation [J].
Feng, Li-Chao ;
Xie, Ning ;
Shao, Wen-Zhu ;
Lu, Liang-Xing ;
Zhen, Liang ;
Zhao, Jie .
COMPOSITES PART B-ENGINEERING, 2016, 92 :377-383
[9]   Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives [J].
Fu, Yuan-Xiang ;
He, Zhuo-Xian ;
Mo, Dong-Chuan ;
Lu, Shu-Shen .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 86 :276-283
[10]   Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites [J].
Ganguli, Sabyasachi ;
Roy, Ajit K. ;
Anderson, David P. .
CARBON, 2008, 46 (05) :806-817