Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows

被引:48
作者
Piracha, Afaq H. [1 ]
Rath, Patrik [2 ,3 ]
Ganesan, Kumaravelu [1 ]
Kuehn, Stefan [4 ]
Pernice, Wolfram H. P. [2 ,3 ]
Prawer, Steven [1 ]
机构
[1] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia
[2] Karlsruhe Inst Technol, Inst Nanotechnol INT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
[4] Karlsruhe Inst Technol, Ctr Funct Nanostruct CFN, D-76131 Karlsruhe, Germany
基金
澳大利亚研究理事会;
关键词
Single crystal diamond; integrated optics; photonic circuits; optical microresonators; QUANTUM INFORMATION; SPIN COHERENCE; HIGH-QUALITY; CENTERS;
D O I
10.1021/acs.nanolett.6b00974
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all diamond photonic metrology tools.
引用
收藏
页码:3341 / 3347
页数:7
相关论文
共 59 条
[1]   Diamond-based single-photon emitters [J].
Aharonovich, I. ;
Castelletto, S. ;
Simpson, D. A. ;
Su, C-H ;
Greentree, A. D. ;
Prawer, S. .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (07)
[2]   Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing [J].
Aharonovich, Igor ;
Lee, Jonathan C. ;
Magyar, Andrew P. ;
Buckley, Bob B. ;
Yale, Christopher G. ;
Awschalom, David D. ;
Hu, Evelyn L. .
ADVANCED MATERIALS, 2012, 24 (10) :OP54-OP59
[3]  
Aharonovich I, 2011, NAT PHOTONICS, V5, P397, DOI [10.1038/nphoton.2011.54, 10.1038/NPHOTON.2011.54]
[4]   Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices [J].
Auciello, Orlando ;
Sumant, Anirudha V. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (7-9) :699-718
[5]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[6]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[7]   Diamond processing by focused ion beam-surface damage and recovery [J].
Bayn, I. ;
Bolker, A. ;
Cytermann, C. ;
Meyler, B. ;
Richter, V. ;
Salzman, J. ;
Kalish, R. .
APPLIED PHYSICS LETTERS, 2011, 99 (18)
[8]   Processing of photonic crystal nanocavity for quantum information in diamond [J].
Bayn, Igal ;
Meyler, Boris ;
Lahav, Alex ;
Salzman, Joseph ;
Kalish, Rafi ;
Fairchild, Barbara A. ;
Prawer, Steven ;
Barth, Michael ;
Benson, Oliver ;
Wolf, Thomas ;
Siyushev, Petr ;
Jelezko, Fedor ;
Wrachtrup, Jorg .
DIAMOND AND RELATED MATERIALS, 2011, 20 (07) :937-943
[9]   Single photon quantum cryptography [J].
Beveratos, A ;
Brouri, R ;
Gacoin, T ;
Villing, A ;
Poizat, JP ;
Grangier, P .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-187901
[10]  
Burek M. J., 2015, ARXIV151204166CONDMA