Theory and numerics of layered shells with variationally embedded interlaminar stresses

被引:9
作者
Gruttmann, F. [1 ]
Knust, G. [1 ]
Wagner, W. [2 ]
机构
[1] Tech Univ Darmstadt, Fachgebiet Festkorpermech, Franziska Braun Str 7, D-64287 Darmstadt, Germany
[2] Karlsruher Inst Technol, Inst Baustat, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
Layered plates and shells; Interlaminar stresses; Mixed hybrid shell element; Standard nodal degrees of freedom; LAMINATED COMPOSITE PLATES; SHEAR STRESSES; STRUCTURAL-ANALYSIS; FINITE-ELEMENTS; FORMULATION; MODEL; CORE;
D O I
10.1016/j.cma.2017.08.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Present paper deals with layered shells subjected to static loading. The basic equations include besides the global equilibrium formulated in terms of stress resultants, the local equilibrium in terms of stresses, the geometric field equations, the constitutive equations, a constraint which enforces the correct shape of the superposed displacement field through the thickness and the boundary conditions. Thereby an interface to three-dimensional material laws is created. The weak form of the boundary value problem is derived and a finite element formulation for quadrilaterals is specified. The mixed hybrid shell element possesses the usual 5 or 6 nodal degrees of freedom. This allows standard geometrical boundary conditions and the elements are applicable also to shell intersection problems. For linear elasticity the computed transverse shear stresses are automatically continuous at layer boundaries and zero at the outer surfaces. In comparison to fully 3D computations present element formulation needs only a fractional amount of computing time. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:713 / 738
页数:26
相关论文
共 41 条
[1]   On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer [J].
Altenbach, Holm ;
Eremeyev, Victor A. ;
Naumenko, Konstantin .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (10) :1004-1011
[2]  
[Anonymous], 1985, Finite Elements Anal Des, DOI [10.1016/0168-874X(85)90003-4, DOI 10.1016/0168-874X(85)90003-4]
[3]   A multiscale projection approach for the coupled global-local structural analysis of photovoltaic modules [J].
Assmus, M. ;
Naumenko, K. ;
Altenbach, H. .
COMPOSITE STRUCTURES, 2016, 158 :340-358
[4]  
Auricchio F, 1999, INT J NUMER METH ENG, V44, P1481, DOI 10.1002/(SICI)1097-0207(19990410)44:10<1481::AID-NME554>3.0.CO
[5]  
2-Q
[6]   Enhanced modeling approach for multilayer anisotropic plates based on dimension reduction method and Hellinger-Reissner principle [J].
Auricchio, Ferdinando ;
Balduzzi, Giuseppe ;
Khoshgoftar, Mohammad Javad ;
Rahimi, Gholamhosein ;
Sacco, Elio .
COMPOSITE STRUCTURES, 2014, 118 :622-633
[7]  
Bach C., 1924, ELASTIZIT FESTIGKEIT
[8]  
Brank B, 2000, INT J NUMER METH ENG, V48, P843, DOI 10.1002/(SICI)1097-0207(20000630)48:6<843::AID-NME903>3.0.CO
[9]  
2-E
[10]   Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking [J].
Carrera, E .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2003, 10 (03) :215-296