Segmentation Squeeze-and-Excitation Blocks in Stroke Lesion Outcome Prediction

被引:1
作者
Amorim, Joana [1 ]
Pinto, Adriano [1 ]
Pereira, Sergio [1 ]
Silva, Carlos A. [1 ]
机构
[1] Univ Minho, Dept Elect, Braga, Portugal
来源
2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG) | 2019年
关键词
MRI; 4D PWI; Attention Models;
D O I
10.1109/enbeng.2019.8692549
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multi-modal Magnetic Resonance Imaging sequences along with 4D Perfusion Weighted Imaging scans provide important information for stroke lesion outcome prediction. However, the proposed methodologies until now were not able to discriminate correctly the most informative features from the less useful ones. In this work, we propose an enhanced version of a data fusion method for stroke tissue outcome prediction by employing attention models. We compare our proposal with two other recent attention mechanisms for image segmentation, showing that all of them improved over the baseline in most metrics. However, our proposal also improved all distance metrics, which indicates a reduction in false positive detections far from the lesion.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Ensemble of Deep Convolutional Neural Networks for Prognosis of Ischemic Stroke [J].
Choi, Youngwon ;
Kwon, Yongchan ;
Lee, Hanbyul ;
Kim, Beom Joon ;
Paik, Myunghee Cho ;
Won, Joong-Ho .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 :231-243
[2]  
Fiez JA, 2000, HUM BRAIN MAPP, V9, P192, DOI 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO
[3]  
2-Y
[4]  
Howard AG, 2017, ARXIV
[5]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[6]  
Mackay Judith., 2004, The atlas of heart disease and stroke, V5
[7]   ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI [J].
Maier, Oskar ;
Menze, Bjoern H. ;
von der Gablentz, Janina ;
Hani, Levin ;
Heinrich, Mattias P. ;
Liebrand, Matthias ;
Winzeck, Stefan ;
Basit, Abdul ;
Bentley, Paul ;
Chen, Liang ;
Christiaens, Daan ;
Dutil, Francis ;
Egger, Karl ;
Feng, Chaolu ;
Glocker, Ben ;
Goetz, Michael ;
Haeck, Tom ;
Halme, Hanna-Leena ;
Havaei, Mohammad ;
Iftekharuddin, Khan M. ;
Jodoin, Pierre-Marc ;
Kamnitsas, Konstantinos ;
Kellner, Elias ;
Korvenoja, Antti ;
Larochelle, Hugo ;
Ledig, Christian ;
Lee, Jia-Hong ;
Maes, Frederik ;
Mahmood, Qaiser ;
Maier-Hein, Klaus H. ;
McKinley, Richard ;
Muschelli, John ;
Pal, Chris ;
Pei, Linmin ;
Rangarajan, Janaki Raman ;
Reza, Syed M. S. ;
Robben, David ;
Rueckert, Daniel ;
Salli, Eero ;
Suetens, Paul ;
Wang, Ching-Wei ;
Wilms, Matthias ;
Kirschke, Jan S. ;
Kraemer, Ulrike M. ;
Muente, Thomas F. ;
Schramme, Peter ;
Wiest, Roland ;
Handels, Heinz ;
Reyes, Mauricio .
MEDICAL IMAGE ANALYSIS, 2017, 35 :250-269
[8]   Lesion segmentation from multimodal MRI using random forest following ischemic stroke [J].
Mitra, Jhimli ;
Bourgeat, Pierrick ;
Fripp, Jurgen ;
Ghose, Soumya ;
Rose, Stephen ;
Salvado, Olivier ;
Connelly, Alan ;
Campbell, Bruce ;
Palmer, Susan ;
Sharma, Gagan ;
Christensen, Soren ;
Carey, Leeanne .
NEUROIMAGE, 2014, 98 :324-335
[9]   Adaptive Feature Recombination and Recalibration for Semantic Segmentation: Application to Brain Tumor Segmentation in MRI [J].
Pereira, Sergio ;
Alves, Victor ;
Silva, Carlos A. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 :706-714
[10]   Enhancing Clinical MRI Perfusion Maps with Data-Driven Maps of Complementary Nature for Lesion Outcome Prediction [J].
Pinto, Adriano ;
Pereira, Sergio ;
Meier, Raphael ;
Alves, Victor ;
Wiest, Roland ;
Silva, Carlos A. ;
Reyes, Mauricio .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 :107-115