Fractional View Analysis of Kuramoto-Sivashinsky Equations with Non-Singular Kernel Operators

被引:49
作者
Alshehry, Azzh Saad [1 ]
Imran, Muhammad [2 ]
Khan, Adnan [3 ]
Shah, Rasool [3 ]
Weera, Wajaree [4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] Bahria Univ, Sch Humin & Social Sci H&SS, Karachi 75300, Pakistan
[3] Abdul Wali Khan Univ, Dept Math, Mardan 23200, Pakistan
[4] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 07期
关键词
Caputo-Fabrizio and Atangana-Baleanu operators; Adomian decomposition method; natural transform; fractional Kuramoto-Sivashinsky equations; DECOMPOSITION METHOD; NUMERICAL-SOLUTIONS; CALCULUS; FAMILY; FLOW;
D O I
10.3390/sym14071463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we investigate the nonlinear model describing the various physical and chemical phenomena named the Kuramoto-Sivashinsky equation. We implemented the natural decomposition method, a novel technique, mixed with the Caputo-Fabrizio (CF) and Atangana-Baleanu deriavatives in Caputo manner (ABC) fractional derivatives for obtaining the approximate analytical solution of the fractional Kuramoto-Sivashinsky equation (FKS). The proposed method gives a series form solution which converges quickly towards the exact solution. To show the accuracy of the proposed method, we examine three different cases. We presented proposed method results by means of graphs and tables to ensure proposed method validity. Further, the behavior of the achieved results for the fractional order is also presented. The results we obtain by implementing the proposed method shows that our technique is extremely efficient and simple to investigate the behaviour of nonlinear models found in science and technology.
引用
收藏
页数:24
相关论文
共 65 条
[21]  
Keskin Y, 2009, INT J NONLIN SCI NUM, V10, P741
[22]   Modified Modelling for Heat Like Equations within Caputo Operator [J].
Khan, Hassan ;
Khan, Adnan ;
Al-Qurashi, Maysaa ;
Shah, Rasool ;
Baleanu, Dumitru .
ENERGIES, 2020, 13 (08)
[23]   Numerical solutions of the generalized Kuramoto-Sivashinsky equation by Chebyshev spectral collocation methods [J].
Khater, A. H. ;
Temsah, R. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (06) :1465-1472
[24]  
Kilbas A., 2001, Appl. Anal., V78, P153, DOI DOI 10.1080/00036810108840931
[25]   Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus [J].
Kiryakova, VS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :241-259
[26]   A subdiffusive Navier-Stokes-Voigt system [J].
Krasnoschok, Mykola ;
Pata, Vittorino ;
Siryk, Sergii, V ;
Vasylyeva, Nataliya .
PHYSICA D-NONLINEAR PHENOMENA, 2020, 409
[27]   PERSISTENT PROPAGATION OF CONCENTRATION WAVES IN DISSIPATIVE MEDIA FAR FROM THERMAL EQUILIBRIUM [J].
KURAMOTO, Y ;
TSUZUKI, T .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :356-369
[28]   A New Approximate Analytical Solution of Kuramoto - Sivashinsky Equation Using Homotopy Analysis Method [J].
Kurulay, Muhammet ;
Secer, Aydin ;
Akinlar, Mehmet Ali .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01) :267-271
[29]   Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions [J].
Lakestani, Mehrdad ;
Dehghan, Mehdi .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (02) :605-617
[30]  
Miller Kenneth S, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations