Molecular signatures that can be transferred across different omics platforms

被引:13
作者
Altenbuchinger, M. [1 ]
Schwarzfischer, P. [2 ]
Rehberg, T. [1 ]
Reinders, J. [2 ]
Kohler, Ch. W. [1 ]
Gronwald, W. [2 ]
Richter, J. [3 ,4 ]
Szczepanowski, M. [3 ,4 ]
Masque-Soler, N. [3 ,4 ]
Klapper, W. [3 ,4 ]
Oefner, P. J. [2 ]
Spang, R. [1 ]
机构
[1] Univ Regensburg, Stat Bioinformat, Regensburg, Germany
[2] Univ Regensburg, Inst Funct Genom, Regensburg, Germany
[3] Christian Albrecht Univ, Univ Hosp Schleswig Holstein, Dept Pathol, Hematopathol Sect, Campus Kiel, D-24105 Kiel, Germany
[4] Christian Albrecht Univ, Univ Hosp Schleswig Holstein, Lymph Node Registry, Campus Kiel, D-24105 Kiel, Germany
关键词
GENE-EXPRESSION; VARIABLE SELECTION; LYMPHOMA; CLASSIFICATION; REGULARIZATION; REGRESSION; DIAGNOSIS; SURVIVAL; SUBTYPES;
D O I
10.1093/bioinformatics/btx241
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Molecular signatures for treatment recommendations are well researched. Still it is challenging to apply them to data generated by different protocols or technical platforms. Results: We analyzed paired data for the same tumors (Burkitt lymphoma, diffuse large B-cell lymphoma) and features that had been generated by different experimental protocols and analytical platforms including the nanoString nCounter and Affymetrix Gene Chip transcriptomics as well as the SWATH and SRM proteomics platforms. A statistical model that assumes independent sample and feature effects accounted for 69-94% of technical variability. We analyzed how variability is propagated through linear signatures possibly affecting predictions and treatment recommendations. Linear signatures with feature weights adding to zero were substantially more robust than unbalanced signatures. They yielded consistent predictions across data from different platforms, both for transcriptomics and proteomics data. Similarly stable were their predictions across data from fresh frozen and matching formalin-fixed paraffin-embedded human tumor tissue.
引用
收藏
页码:I333 / I340
页数:8
相关论文
共 32 条
  • [1] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [2] Reference point insensitive molecular data analysis
    Altenbuchinger, M.
    Rehberg, T.
    Zacharias, H. U.
    Staemmler, F.
    Dettmer, K.
    Weber, D.
    Hiergeist, A.
    Gessner, A.
    Holler, E.
    Oefner, P. J.
    Spang, R.
    [J]. BIOINFORMATICS, 2017, 33 (02) : 219 - 226
  • [3] Molecular diagnosis of Burkitt's lymphoma
    Dave, Sandeep S.
    Fu, Kai
    Wright, George W.
    Lam, Lloyd T.
    Kluin, Philip
    Boerma, Evert-Jan
    Greiner, Timothy C.
    Weisenburger, Dennis D.
    Rosenwald, Andreas
    Ott, German
    Mueller-Hermelink, Hans-Konrad
    Gascoyne, Randy D.
    Delabie, Jan
    Rimsza, Lisa M.
    Braziel, Rita M.
    Grogan, Thomas M.
    Campo, Elias
    Jaffe, Elaine S.
    Dave, Bhavana J.
    Sanger, Warren
    Bast, Martin
    Vose, Julie M.
    Armitage, James O.
    Connors, Joseph M.
    Smeland, Erlend B.
    Kvaloy, Stein
    Holte, Harald
    Fisher, Richard I.
    Miller, Thomas P.
    Montserrat, Emilio
    Wilson, Wyndham H.
    Bahl, Manisha
    Zhao, Hong
    Yang, Liming
    Powell, John
    Simon, Richard
    Chan, Wing C.
    Staudt, Louis M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (23) : 2431 - 2442
  • [4] Super-SILAC Allows Classification of Diffuse Large B-cell Lymphoma Subtypes by Their Protein Expression Profiles
    Deeb, Sally J.
    D'Souza, Rochelle C. J.
    Cox, Juergen
    Schmidt-Supprian, Marc
    Mann, Matthias
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (05) : 77 - 89
  • [5] Comparison of targeted proteomics approaches for detecting and quantifying proteins derived from human cancer tissues
    Faktor, Jakub
    Sucha, Rita
    Paralova, Vendula
    Liu, Yansheng
    Bouchal, Pavel
    [J]. PROTEOMICS, 2017, 17 (05)
  • [6] DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources
    Firth, Helen V.
    Richards, Shola M.
    Bevan, A. Paul
    Clayton, Stephen
    Corpas, Manuel
    Rajan, Diana
    Van Vooren, Steven
    Moreau, Yves
    Pettett, Roger M.
    Carter, Nigel P.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 84 (04) : 524 - 533
  • [7] Gel-aided sample preparation (GASP)-A simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells
    Fischer, Roman
    Kessler, Benedikt M.
    [J]. PROTEOMICS, 2015, 15 (07) : 1224 - 1229
  • [8] Regularization Paths for Generalized Linear Models via Coordinate Descent
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Rob
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01): : 1 - 22
  • [9] Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis
    Gillet, Ludovic C.
    Navarro, Pedro
    Tate, Stephen
    Roest, Hannes
    Selevsek, Nathalie
    Reiter, Lukas
    Bonner, Ron
    Aebersold, Ruedi
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (06)
  • [10] Toward a Shared Vision for Cancer Genomic Data
    Grossman, Robert L.
    Heath, Allison P.
    Ferretti, Vincent
    Varmus, Harold E.
    Lowy, Douglas R.
    Kibbe, Warren A.
    Staudt, Louis M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (12) : 1109 - 1112