Glucose-6-phosphatase catalytic subunit 2 negatively regulates glucose oxidation and insulin secretion in pancreatic β-cells

被引:15
作者
Rahim, Mohsin [1 ]
Nakhe, Arya Y. [2 ]
Banerjee, Deveena R. [2 ]
Overway, Emily M. [2 ]
Bosma, Karin J. [2 ]
Rosch, Jonah C. [1 ]
Oeser, James K. [2 ]
Wang, Bo [1 ]
Lippmann, Ethan S. [1 ,3 ,4 ]
Jacobson, David A. [2 ]
Brien, Richard M. O. ' [2 ]
Young, Jamey D. [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN USA
[2] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN USA
[3] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN USA
[4] Vanderbilt Univ, Dept Neurol, Nashville, TN USA
关键词
G6PC2; GENE; ISOTOPOMER; PATHWAYS; ISLETS; NADPH; RATES; LINES;
D O I
10.1016/j.jbc.2022.101729
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on beta-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in beta TC3 cells, a murine pancreatic beta-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to X60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPHproducing pathways in the CAC. These results demonstrate but also, independently, citric acid cycle activity in beta-cells. Overall, our findings implicate G6PC2 as a potential therawhich could benefit individuals with prediabetes, T2D, and obesity.
引用
收藏
页数:15
相关论文
共 62 条
[21]   Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion [J].
Hohmeier, HE ;
Mulder, H ;
Chen, GX ;
Henkel-Rieger, R ;
Prentki, M ;
Newgard, CB .
DIABETES, 2000, 49 (03) :424-430
[22]   Glucose-6-phosphatase Catalytic Subunit Gene Family [J].
Hutton, John C. ;
O'Brien, Richard M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (43) :29241-29245
[23]   Redox control of exocytosis -: Regulatory role of NADPH, thioredoxin, and glutaredoxin [J].
Ivarsson, R ;
Quintens, R ;
Dejonghe, S ;
Tsukamoto, K ;
Veld, P ;
Renström, E ;
Schuit, FC .
DIABETES, 2005, 54 (07) :2132-2142
[24]   Mitochondrial GTP Links Nutrient Sensing to β Cell Health, Mitochondrial Morphology, and Insulin Secretion Independent of OxPhos [J].
Jesinkey, Sean R. ;
Madiraju, Anila K. ;
Alves, Tiago C. ;
Yarborough, OrLando H. ;
Cardone, Rebecca L. ;
Zhao, Xiaojian ;
Parsaei, Yassmin ;
Nasiri, Ali R. ;
Butrico, Gina ;
Liu, Xinran ;
Molina, Anthony J. ;
Rountree, Austin M. ;
Neal, Adam S. ;
Wolf, Dane M. ;
Sterpka, John ;
Philbrick, William M. ;
Sweet, Ian R. ;
Shirihai, Orian H. ;
Kibbey, Richard G. .
CELL REPORTS, 2019, 28 (03) :759-+
[25]  
Krebs H A, 1969, Adv Enzyme Regul, V7, P397, DOI 10.1016/0065-2571(69)90030-2
[26]   The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitor complex [J].
Lauble, H ;
Kennedy, MC ;
Emptage, MH ;
Beinert, H ;
Stout, CD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13699-13703
[27]   Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose [J].
Lee, WNP ;
Boros, LG ;
Puigjaner, J ;
Bassilian, S ;
Lim, S ;
Cascante, M .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1998, 274 (05) :E843-E851
[28]   Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway [J].
Lewandowski, Sophie L. ;
Cardone, Rebecca L. ;
Foster, Hannah R. ;
Thuong Ho ;
Potapenko, Evgeniy ;
Poudel, Chetan ;
VanDeusen, Halena R. ;
Sdao, Sophia M. ;
Alves, Tiago C. ;
Zhao, Xiaojian ;
Capozzi, Megan E. ;
de Souza, Arnaldo H. ;
Jahan, Ishrat ;
Thomas, Craig J. ;
Nunemaker, Craig S. ;
Davis, Dawn Belt ;
Campbell, Jonathan E. ;
Kibbey, Richard G. ;
Merrins, Matthew J. .
CELL METABOLISM, 2020, 32 (05) :736-+
[29]   Tracing Compartmentalized NADPH Metabolism in the Cytosol and Mitochondria of Mammalian Cells [J].
Lewis, Caroline A. ;
Parker, Seth J. ;
Fiske, Brian P. ;
McCloskey, Douglas ;
Gui, Dan Y. ;
Green, Courtney R. ;
Vokes, Natalie I. ;
Feist, Adam M. ;
Vander Heiden, Matthew G. ;
Metallo, Christian M. .
MOLECULAR CELL, 2014, 55 (02) :253-263
[30]   Additive Effects of Genetic Variation in GCK and G6PC2 on Insulin Secretion and Fasting Glucose [J].
Li, Xia ;
Shu, Yu-Hsing ;
Xiang, Anny H. ;
Trigo, Enrique ;
Kuusisto, Johanna ;
Hartiala, Jaana ;
Swift, Amy J. ;
Kawakubo, Miwa ;
Stringham, Heather M. ;
Bonnycastle, Lori L. ;
Lawrence, Jean M. ;
Laakso, Markku ;
Allayee, Hooman ;
Buchanan, Thomas A. ;
Watanabe, Richard M. .
DIABETES, 2009, 58 (12) :2946-2953