Existence for singular doubly nonlinear systems of porous medium type with time dependent boundary values

被引:4
作者
Schaetzler, Leah [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Porous medium equation; Doubly nonlinear systems; Existence; Minimizing movements; VARIATIONAL APPROACH; OBSTACLE PROBLEM; EQUATIONS; DIFFUSION;
D O I
10.1007/s41808-019-00048-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence of variational solutions to the Cauchy-Dirichlet problem with time dependent boundary values associated with doubly nonlinear systems and a convex function f satisfying a standard p-growth condition for an exponent p is an element of(1,infinity). The proof relies on a nonlinear version of the method of minimizing movements.
引用
收藏
页码:383 / 421
页数:39
相关论文
共 28 条
[1]   DOUBLY NONLINEAR EQUATIONS AS CONVEX MINIMIZATION [J].
Akagi, Goro ;
Stefanelli, Ulisse .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (03) :1922-1945
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]  
[Anonymous], 2015, MEASURE THEORY FINE
[4]  
[Anonymous], 1967, Tr. Mat. Inst. Steklova
[5]  
[Anonymous], 1984, TEUBNER TEXTE MATH
[6]  
ARONSON DG, 1970, ARCH RATION MECH AN, V37, P1
[7]  
Barenblatt G. I., 1952, Prikl. Mat. Makh., V16, P67
[8]  
Barenblatt GI, 1956, PRIKL MAT MEKH, V20, P761
[10]   The higher integrability of weak solutions of porous medium systems [J].
Boegelein, Verena ;
Duzaar, Frank ;
Korte, Riikka ;
Scheven, Christoph .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1004-1034