Mammalian Mitochondrial Complex I: Biogenesis, Regulation, and Reactive Oxygen Species Generation

被引:325
|
作者
Koopman, Werner J. H. [1 ,2 ]
Nijtmans, Leo G. J. [3 ]
Dieteren, Cindy E. J. [1 ,3 ]
Roestenberg, Peggy [1 ,3 ]
Valsecchi, Federica [1 ,3 ]
Smeitink, Jan A. M. [3 ]
Willems, Peter H. G. M. [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, Dept Biochem, 286 Biochem,POB 9101, NL-6500 HB Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mol Life Sci, Microscop Imaging Ctr, NL-6500 HB Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Nijmegen Ctr Mitochondrial Disorders, Dept Pediat, NL-6500 HB Nijmegen, Netherlands
关键词
NADH-UBIQUINONE OXIDOREDUCTASE; ELECTRON-TRANSPORT-CHAIN; OXIDATIVELY DAMAGED PROTEINS; BOVINE HEART-MITOCHONDRIA; RESPIRATORY-CHAIN; SUPEROXIDE-PRODUCTION; ENDOPLASMIC-RETICULUM; HYDROGEN-PEROXIDE; CELL-DEATH; ESCHERICHIA-COLI;
D O I
10.1089/ars.2009.2743
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH: ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency. Antioxid. Redox Signal. 12, 1431-1470.
引用
收藏
页码:1431 / 1470
页数:40
相关论文
共 50 条
  • [21] Isoflurane Enhances Reactive Oxygen Species Generation via Attenuation of Complex I
    Hirata, Naoyuki
    Stowe, David
    Bosnjak, Zeljko
    Bienengraeber, Martin
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 46 - 46
  • [22] Analysis of mitochondrial generation and release of reactive oxygen species
    Mattiasson, G
    CYTOMETRY PART A, 2004, 62A (02): : 89 - 96
  • [23] Role of mitochondrial reactive oxygen species in homeostasis regulation
    Zhang, Baoyi
    Pan, Cunyao
    Feng, Chong
    Yan, Changqing
    Yu, Yijing
    Chen, Zhaoli
    Guo, Changjiang
    Wang, Xinxing
    REDOX REPORT, 2022, 27 (01) : 45 - 52
  • [24] Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions
    Fukushima, Caio Tabata
    Dancil, Ian-Shika
    Clary, Hannah
    Shah, Nidhi
    Nadtochiy, Sergiy M.
    Brookes, Paul S.
    REDOX BIOLOGY, 2024, 70
  • [25] Lyssavirus phosphoproteins increase mitochondrial complex I activity and levels of reactive oxygen species
    Wafa Kammouni
    Heidi Wood
    Alan C. Jackson
    Journal of NeuroVirology, 2017, 23 : 756 - 762
  • [26] Do semiquinones formed by mitochondrial complex I contribute to reactive oxygen species production?
    Pryde, Kenneth R.
    Hirst, Judy
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 : 61 - 62
  • [27] Lyssavirus phosphoproteins increase mitochondrial complex I activity and levels of reactive oxygen species
    Kammouni, Wafa
    Wood, Heidi
    Jackson, Alan C.
    JOURNAL OF NEUROVIROLOGY, 2017, 23 (05) : 756 - 762
  • [28] The production of reactive oxygen species by complex I
    Hirst, Judy
    King, Martin S.
    Pryde, Kenneth R.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2008, 36 : 976 - 980
  • [29] EVIDENCE OF POSTTRANSCRIPTIONAL REGULATION IN MAMMALIAN MITOCHONDRIAL BIOGENESIS
    IZQUIERDO, JM
    CUEZVA, JM
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 196 (01) : 55 - 60
  • [30] Regulation of reactive oxygen species generation in cell signaling
    Bae, Yun Soo
    Oh, Hyunjin
    Rhee, Sue Goo
    Do Yoo, Young
    MOLECULES AND CELLS, 2011, 32 (06) : 491 - 509