Contribution of PPi-Hydrolyzing Function of Vacuolar H+-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes

被引:32
|
作者
Asaoka, Mariko [1 ]
Segami, Shoji [1 ]
Ferjani, Ali [2 ]
Maeshima, Masayoshi [1 ]
机构
[1] Nagoya Univ, Grad Sch Bioagr Sci, Lab Cell Dynam, Nagoya, Aichi 4648601, Japan
[2] Tokyo Gakugei Univ, Dept Biol, Tokyo, Japan
来源
关键词
Arabidopsis thaliana; H+-pyrophosphatase; pyrophosphate; proton pump; vacuole; plant growth; DROUGHT-STRESS TOLERANCE; INORGANIC PYROPHOSPHATASE; MOLECULAR-CLONING; CELL EXPANSION; PLANT-GROWTH; ORGAN SIZE; GENE; OVEREXPRESSION; ATPASE; SALT;
D O I
10.3389/fpls.2016.00415
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The vacuolar-type H+-pyrophosphatase (H+-PPase) catalyzes a coupled reaction of pyrophosphate (PPi) hydrolysis and active proton translocation across the tonoplast. Overexpression of H+-PPase improves growth in various plant species, and loss-of function mutants (fugu5s) of H+-PPase in Arabidopsis thaliana have post-germinative developmental defects. Here, to further clarify the physiological significance of this important enzyme, we newly generated three varieties of H+-PPase overexpressing lines with different levels of activity that we analyzed together with the loss-of-function mutant fugu5-3. The H+-PPase overexpressors exhibited enhanced activity of H+-PPase during vegetative growth, but no change in the activity of vacuolar H+-ATPase. Overexpressors with high enzymatic activity grew more vigorously with fresh weight increased by more than 24 and 44%, compared to the wild type and fugu5-3, respectively. Consistently, the overexpressors had larger rosette leaves and nearly 30% more cells in leaves than the wild type. When uncoupling mutated variants of H+-PPase, that could hydrolyze PPi but could not translocate protons, were introduced into the fugu5-3 mutant background, shoot growth defects recovered to the same levels as when a normal H+-PPase was introduced. Taken together, our findings clearly demonstrate that additional expression of H+-PPase improves plant growth by increasing cell number, predominantly as a consequence of the PPi-hydrolyzing activity of the enzyme.
引用
收藏
页数:12
相关论文
共 8 条
  • [1] Keep an Eye on PPi: The Vacuolar-Type H+-Pyrophosphatase Regulates Postgerminative Development in Arabidopsis
    Ferjani, Ali
    Segami, Shoji
    Horiguchi, Gorou
    Muto, Yukari
    Maeshima, Masayoshi
    Tsukaya, Hirokazu
    PLANT CELL, 2011, 23 (08): : 2895 - 2908
  • [2] Overexpression of vacuolar H+-pyrophosphatase from a recretohalophyte Reaumuria trigyna enhances vegetative growth and salt tolerance in transgenic Arabidopsis thaliana
    Li, Ningning
    Cui, Yuzhu
    Zhang, Zijian
    Wang, Shuai
    Sun, Yaqing
    Zhang, Shaoying
    Li, Guolong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [3] Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance
    Hua Qin
    Qiang Gu
    Sundaram Kuppu
    Li Sun
    Xunlu Zhu
    Neelam Mishra
    Rongbin Hu
    Guoxin Shen
    Junling Zhang
    Yizheng Zhang
    Longfu Zhu
    Xianlong Zhang
    Mark Burow
    Paxton Payton
    Hong Zhang
    Plant Biotechnology Reports, 2013, 7 : 345 - 355
  • [4] Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance
    Qin, Hua
    Gu, Qiang
    Kuppu, Sundaram
    Sun, Li
    Zhu, Xunlu
    Mishra, Neelam
    Hu, Rongbin
    Shen, Guoxin
    Zhang, Junling
    Zhang, Yizheng
    Zhu, Longfu
    Zhang, Xianlong
    Burow, Mark
    Payton, Paxton
    Zhang, Hong
    PLANT BIOTECHNOLOGY REPORTS, 2013, 7 (03) : 345 - 355
  • [5] Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato
    Bhaskaran, Shimna
    Savithramma, D. L.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (15) : 5561 - 5570
  • [6] Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions
    Pasapula, Vijaya
    Shen, Guoxin
    Kuppu, Sundaram
    Paez-Valencia, Julio
    Mendoza, Marisol
    Hou, Pei
    Chen, Jian
    Qiu, Xiaoyun
    Zhu, Longfu
    Zhang, Xianlong
    Auld, Dick
    Blumwald, Eduardo
    Zhang, Hong
    Gaxiola, Roberto
    Payton, Paxton
    PLANT BIOTECHNOLOGY JOURNAL, 2011, 9 (01) : 88 - 99
  • [7] Cloning and characterization of vacuolar H+-pyrophosphatase gene (AnVP1) from Ammopiptanthus nanus and its heterologous expression enhances osmotic tolerance in yeast and Arabidopsis thaliana
    Hao Qiang Yu
    Nan Han
    Yuan Yuan Zhang
    Yi Tao
    Lei Chen
    Yan Ping Liu
    Shu Feng Zhou
    Feng Ling Fu
    Wan Chen Li
    Plant Growth Regulation, 2017, 81 : 385 - 397
  • [8] Cloning and characterization of vacuolar H+-pyrophosphatase gene (AnVP1) from Ammopiptanthus nanus and its heterologous expression enhances osmotic tolerance in yeast and Arabidopsis thaliana
    Yu, Hao Qiang
    Han, Nan
    Zhang, Yuan Yuan
    Tao, Yi
    Chen, Lei
    Liu, Yan Ping
    Zhou, Shu Feng
    Fu, Feng Ling
    Li, Wan Chen
    PLANT GROWTH REGULATION, 2017, 81 (03) : 385 - 397