Iterative learning control of inhomogeneous distributed parameter systems-frequency domain design and analysis

被引:50
作者
Huang, Deqing [1 ]
Li, Xuefang [2 ]
Xu, Jian-Xin [2 ]
Xu, Chao [3 ]
He, Wei [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[3] Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Robot, Sch Automat Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划); 英国工程与自然科学研究理事会;
关键词
Iterative learning control; Inhomogeneous distributed parameter system; Transfer function; Boundary control;
D O I
10.1016/j.sysconle.2014.08.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper aims to construct a design and analysis framework for iterative learning control of linear inhomogeneous distributed parameter systems (LIDPSs), which may be hyperbolic, parabolic, or elliptic, and include many important physical processes such as diffusion, vibration, heat conduction and wave propagation as special cases. Owing to the system model characteristics, LIDPSs are first reformulated into a matrix form in the Laplace transform domain. Then, through the determination of a fundamental matrix, the transfer function of LIDPS is precisely evaluated in a closed form. The derived transfer function provides the direct input-output relationship of the LIDPS, and thus facilitates the consequent ILC design and convergence analysis in the frequency domain. The proposed control design scheme is able to deal with parametric and non-parametric uncertainties and make full use of the process repetition, while avoid any simplification or discretization for the 3D dynamics of LIDPS in the time, space, and iteration domains. In the end, two illustrative processes are addressed to demonstrate the efficacy of the proposed iterative learning control scheme. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 29
页数:8
相关论文
共 23 条
[1]   Iterative learning control: Brief survey and categorization [J].
Ahn, Hyo-Sung ;
Chen, YangQuan ;
Moore, Kevin L. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (06) :1099-1121
[2]   BETTERING OPERATION OF ROBOTS BY LEARNING [J].
ARIMOTO, S ;
KAWAMURA, S ;
MIYAZAKI, F .
JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02) :123-140
[3]   A survey of iterative learning control [J].
Bristow, Douglas A. ;
Tharayil, Marina ;
Alleyne, Andrew G. .
IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03) :96-114
[4]  
Chen Y., 2001, P 40 IEEE C DEC CONT
[5]   Iterative learning control and repetitive control in hard disk drive industry - A tutorial [J].
Chen, YangQuan ;
Moore, Kevin L. ;
Yu, Jie ;
Zhang, Tao .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (04) :325-343
[6]   Data-driven optimal terminal iterative learning control [J].
Chi, Ronghu ;
Wang, Danwei ;
Hou, Zhongsheng ;
Jin, Shangtai .
JOURNAL OF PROCESS CONTROL, 2012, 22 (10) :2026-2037
[7]   Constrained digital regulation of hyperbolic PDE systems: A learning control approach [J].
Choi, J ;
Seo, BJ ;
Lee, KS .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2001, 18 (05) :606-611
[8]   An approach to iterative learning control for spatio-temporal dynamics using nD discrete linear systems models [J].
Cichy, Blazej ;
Galkowski, Krzysztof ;
Rogers, Eric ;
Kummert, Anton .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2011, 22 (1-3) :83-96
[9]   Transfer functions of distributed parameter systems: A tutorial [J].
Curtain, Ruth ;
Morris, Kirsten .
AUTOMATICA, 2009, 45 (05) :1101-1116
[10]  
He W., 2013, DYNAMICS CONTROL MEC