EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation

被引:173
|
作者
Ang, Kai Keng [1 ,2 ]
Guan, Cuntai [1 ,2 ]
机构
[1] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
Adaptive; brain-computer interface (BCI); electroenceptography (EEG); machine learning; motor imagery (MI); operant conditioning; stroke rehabilitation; BRAIN-COMPUTER INTERFACE; SINGLE-TRIAL EEG; CHRONIC STROKE; ADAPTIVE CLASSIFICATION; UPPER-LIMB; BCI; SYSTEM; FILTERS; RHYTHM; STATE;
D O I
10.1109/TNSRE.2016.2646763
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Advances in brain-computer interface (BCI) technology have facilitated the detection of Motor Imagery (MI) from electroencephalography (EEG). First, we present three strategies of using BCI to detect MI from EEG: operant conditioning that employed a fixed model, machine learning that employed a subject-specific model computed from calibration, and adaptive strategy that continuously compute the subject-specific model. Second, we review prevailing works that employed the operant conditioning and machine learning strategies. Third, we present our past work on six stroke patients who underwent a BCI rehabilitation clinical trial with averaged accuracies of 79.8% during calibration and 69.5% across 18 online feedback sessions. Finally, we perform an offline study in this paper on our work employing the adaptive strategy. The results yielded significant improvements of 12% (p < 0.001) and 9% (p < 0.001) using all the data and using limited preceding data respectively in the feedback accuracies. The results showed an increase in the amount of training data yielded improvements. Nevertheless, results of using limited preceding data showed a larger part of the improvement was due to the adaptive strategy and changing subject-specific models did not deteriorate the accuracies. Hence the adaptive strategy is effective in addressing the non-stationarity between calibration and feedback sessions.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 50 条
  • [41] Calibrating EEG-based motor imagery brain-computer interface from passive movement
    Ang, Kai Keng
    Guan, Cuntai
    Wang, Chuanchu
    Phua, Kok Soon
    Tan, Adrian Hock Guan
    Chin, Zheng Yang
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 4199 - 4202
  • [42] TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI
    Liu, Xiaolin
    Shi, Rongye
    Hui, Qianxin
    Xu, Susu
    Wang, Shuai
    Na, Rui
    Sun, Ying
    Ding, Wenbo
    Zheng, Dezhi
    Chen, Xinlei
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [43] Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces
    Wu, Huanyu
    Li, Siyang
    Wu, Dongrui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 527 - 536
  • [44] EEG-based motor imagery analysis using weighted wavelet transform features
    Hsu, Wei-Yen
    Sun, Yung-Nien
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 176 (02) : 310 - 318
  • [45] Graph Learning With Co-Teaching for EEG-Based Motor Imagery Recognition
    Zhang, Yifan
    Yu, Yang
    Wang, Bo
    Shen, Hui
    Lu, Gai
    Liu, Yingxin
    Zeng, Ling-Li
    Hu, Dewen
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 1722 - 1731
  • [46] EEG-Based Motor Imagery Classification with Deep Multi-Task Learning
    Song, Yaguang
    Wang, Danli
    Yue, Kang
    Zheng, Nan
    Shen, Zuo-Jun Max
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [47] Nonspecific Visuospatial Imagery as a Novel Mental Task for Online EEG-Based BCI Control
    Stojic, Filip
    Chau, Tom
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2020, 30 (06)
  • [48] Common Bayesian Network for Classification of EEG-Based Multiclass Motor Imagery BCI
    He, Lianghua
    Hu, Die
    Wan, Meng
    Wen, Ying
    von Deneen, Karen M.
    Zhou, MengChu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (06): : 843 - 854
  • [49] A Single-Trial Multiclass Classification of Various Motor Imagery Tasks for EEG-Based Brain-Computer Interface Communication
    Misawa, Tadanobu
    Matsuda, Jumpei
    Hirobayashi, Shigeki
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2017, 100 (01) : 18 - 26
  • [50] A novel multi-scale fusion convolutional neural network for EEG-based motor imagery classification
    Yang, Guangyu
    Liu, Jinguo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96