Best Monotone Degree Conditions for Graph Properties: A Survey

被引:25
作者
Bauer, D. [2 ]
Broersma, H. J. [1 ]
van den Heuvel, J. [3 ]
Kahl, N. [4 ]
Nevo, A. [2 ]
Schmeichel, E. [5 ]
Woodall, D. R. [6 ]
Yatauro, M. [7 ]
机构
[1] Univ Twente, Fac EEMCS, NL-7500 AE Enschede, Netherlands
[2] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[3] London Sch Econ, Dept Math, London WC2A 2AE, England
[4] Seton Hall Univ, Dept Math & Comp Sci, S Orange, NJ 07079 USA
[5] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[6] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[7] Penn State Univ, Dept Math, Media, PA 19063 USA
关键词
Best monotone degree conditions; Hamiltonicity; Connectivity; Toughness; k-factor; Binding number; HAMILTONIAN DEGREE CONDITIONS; BINDING NUMBER; SUFFICIENT CONDITION; INDEPENDENT SETS; CHROMATIC NUMBER; TOUGH GRAPHS; CONNECTEDNESS; NEIGHBORHOODS;
D O I
10.1007/s00373-014-1465-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvatal's well-known degree condition for hamiltonicity is best possible.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 61 条
[1]  
Anderson I., 1971, J. Combin. Theory Ser. B, V10, P183
[2]  
[Anonymous], 1992, The Probabilistic Method
[3]   HAMILTONIAN DEGREE CONDITIONS WHICH IMPLY A GRAPH IS PANCYCLIC [J].
BAUER, D ;
SCHMEICHEL, E .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) :111-116
[4]   A SIMPLE PROOF OF A THEOREM OF JUNG [J].
BAUER, D ;
MORGANA, A ;
SCHMEICHEL, EF .
DISCRETE MATHEMATICS, 1990, 79 (02) :147-152
[5]   Best monotone degree conditions for binding number and cycle structure [J].
Bauer, D. ;
Nevo, A. ;
Schmeichel, E. ;
Woodall, D. R. ;
Yatauro, M. .
DISCRETE APPLIED MATHEMATICS, 2015, 195 :8-17
[6]   Toughness and binding number [J].
Bauer, D. ;
Kahl, N. ;
Schmeichel, E. ;
Woodall, D. R. ;
Yatauro, M. .
DISCRETE APPLIED MATHEMATICS, 2014, 165 :60-68
[7]   Toughness and Vertex Degrees [J].
Bauer, D. ;
Broersma, H. J. ;
van den Heuvel, J. ;
Kahl, N. ;
Schmeichel, E. .
JOURNAL OF GRAPH THEORY, 2013, 72 (02) :209-219
[8]   Binding Number, Minimum Degree, and Cycle Structure in Graphs [J].
Bauer, D. ;
Schmeichel, E. .
JOURNAL OF GRAPH THEORY, 2012, 71 (02) :219-228
[9]   Degree Sequences and the Existence of k-Factors [J].
Bauer, D. ;
Broersma, H. J. ;
van den Heuvel, J. ;
Kahl, N. ;
Schmeichel, E. .
GRAPHS AND COMBINATORICS, 2012, 28 (02) :149-166
[10]   Best monotone degree conditions for binding number [J].
Bauer, D. ;
Yatauro, M. ;
Kahl, N. ;
Schmeichel, E. .
DISCRETE MATHEMATICS, 2011, 311 (18-19) :2037-2043