Effect of parameters on the compressive strength of fly ash based geopolymer concrete

被引:84
|
作者
Chithambaram, S. Jeeva [1 ]
Kumar, Sanjay [1 ]
Prasad, Madan M. [1 ]
Adak, Dibyendu [2 ]
机构
[1] NIT, Dept Civil Engn, Jamshedpur, Bihar, India
[2] NIT, Dept Civil Engn, Shillong, Meghalayn, India
关键词
aggregate content; compressive strength; curing time; fly ash; geopolymer concrete; NaOH concentration; SI/AL RATIO SYSTEMS; CONDENSATION-REACTIONS; ELEVATED-TEMPERATURES; DISSOLUTION PROCESSES; SODIUM POLYSIALATE; CEMENT; PERFORMANCE; HYDROLYSIS; METAKAOLIN;
D O I
10.1002/suco.201700235
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Geopolymer concrete is an inorganic polymer composite which has the potential to build an eco-friendly and sustainable construction by replacing the existing conventional concrete. Herein, cement is totally replaced by mineral admixtures rich in aluminosilicates such as fly ash and is formed by the alkali activation using alkaline activator solutions, such as sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). Fly ash, a waste material from industry, can be incorporated in the manufacture of geopolymer concrete. The replacement of cement by fly ash in geopolymer concrete reduces the huge energy consumption and restricts carbon dioxide emission to the atmosphere during its production. In this paper, experimental investigations have been carried out involving the variation of total aggregate content (viz., 74, 76, 78, 80, and 82%), NaOH concentration (8, 10, 12, and 14M), and curing temperature (60, 70, 80, 90, and 100 degrees C) on the strength of geopolymer concrete by keeping a constant alkaline liquid to fly ash ratio of 0.45 and a 24-hour rest period. It is concluded that 76% of total aggregate content is suitable for producing geopolymer concrete without hindering the workability. Further, strength of geopolymer concrete has been found to be increased at 90 degrees C having 12M NaOH concentration.
引用
收藏
页码:1202 / 1209
页数:8
相关论文
共 50 条
  • [31] Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review
    Rathnayaka, Madushan
    Karunasinghe, Dulakshi
    Gunasekara, Chamila
    Wijesundara, Kushan
    Lokuge, Weena
    Law, David W.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 419
  • [32] Machine learning-driven optimization for predicting compressive strength in fly ash geopolymer concrete
    Bypour, Maryam
    Yekrangnia, Mohammad
    Kioumarsi, Mahdi
    CLEANER ENGINEERING AND TECHNOLOGY, 2025, 25
  • [33] Fly ash-based geopolymer concrete's compressive strength estimation by applying artificial intelligence methods
    Pazouki, Gholamreza
    MEASUREMENT, 2022, 203
  • [34] Effect of mechanical milling of fly ash powder on compressive strength of geopolymer
    Debnath, Krishna
    Das, Dipankar
    Rout, Prasanta Kumar
    MATERIALS TODAY-PROCEEDINGS, 2022, 68 : 242 - 249
  • [35] Influence of red mud on performance enhancement of fly ash-based geopolymer concrete
    Bellum, Ramamohana Reddy
    Venkatesh, Chava
    Madduru, Sri Rama Chand
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2021, 6 (04)
  • [36] Effect of Ground Granulated Blast Slag and Temperature Curing on the Strength of Fly Ash-based Geopolymer Concrete
    Kumar, Anil
    Rajkishor
    Kumar, Niraj
    Chhotu, Anil Kumar
    Kumar, Bhushan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (02) : 13319 - 13323
  • [37] Effect of GGBS and chloride on compressive strength and corrosion performance of steel in fly ash-GGBS based geopolymer concrete
    Prusty, Jnyanendra Kumar
    Pradhan, Bulu
    MATERIALS TODAY-PROCEEDINGS, 2020, 32 : 850 - 855
  • [38] Strength properties of Fly Ash based Geopolymer Concrete cured at different temperatures
    Dissanayake, D. M. H.
    Dissanayake, D. M. A. K.
    Pathirana, C. K.
    ELECTRONIC JOURNAL OF STRUCTURAL ENGINEERING, 2022, 22 (02): : 19 - 26
  • [39] Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar
    Ranjbar, Navid
    Mehrali, Mehdi
    Behnia, Arash
    Alengaram, U. Johnson
    Jumaat, Mohd Zamin
    MATERIALS & DESIGN, 2014, 59 : 532 - 539
  • [40] Thermal resistance of fly ash based rubberized geopolymer concrete
    Luhar, Salmabanu
    Chaudhary, Sandeep
    Luhar, Ismail
    JOURNAL OF BUILDING ENGINEERING, 2018, 19 : 420 - 428