Effect of parameters on the compressive strength of fly ash based geopolymer concrete

被引:91
作者
Chithambaram, S. Jeeva [1 ]
Kumar, Sanjay [1 ]
Prasad, Madan M. [1 ]
Adak, Dibyendu [2 ]
机构
[1] NIT, Dept Civil Engn, Jamshedpur, Bihar, India
[2] NIT, Dept Civil Engn, Shillong, Meghalayn, India
关键词
aggregate content; compressive strength; curing time; fly ash; geopolymer concrete; NaOH concentration; SI/AL RATIO SYSTEMS; CONDENSATION-REACTIONS; ELEVATED-TEMPERATURES; DISSOLUTION PROCESSES; SODIUM POLYSIALATE; CEMENT; PERFORMANCE; HYDROLYSIS; METAKAOLIN;
D O I
10.1002/suco.201700235
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Geopolymer concrete is an inorganic polymer composite which has the potential to build an eco-friendly and sustainable construction by replacing the existing conventional concrete. Herein, cement is totally replaced by mineral admixtures rich in aluminosilicates such as fly ash and is formed by the alkali activation using alkaline activator solutions, such as sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). Fly ash, a waste material from industry, can be incorporated in the manufacture of geopolymer concrete. The replacement of cement by fly ash in geopolymer concrete reduces the huge energy consumption and restricts carbon dioxide emission to the atmosphere during its production. In this paper, experimental investigations have been carried out involving the variation of total aggregate content (viz., 74, 76, 78, 80, and 82%), NaOH concentration (8, 10, 12, and 14M), and curing temperature (60, 70, 80, 90, and 100 degrees C) on the strength of geopolymer concrete by keeping a constant alkaline liquid to fly ash ratio of 0.45 and a 24-hour rest period. It is concluded that 76% of total aggregate content is suitable for producing geopolymer concrete without hindering the workability. Further, strength of geopolymer concrete has been found to be increased at 90 degrees C having 12M NaOH concentration.
引用
收藏
页码:1202 / 1209
页数:8
相关论文
共 41 条
[1]  
Ali MB, 2001, RENEW SUST ENERG REV, V15, P2252
[2]   Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio [J].
Alonso, S ;
Palomo, A .
MATERIALS LETTERS, 2001, 47 (1-2) :55-62
[3]  
[Anonymous], 381212013 IS
[4]  
[Anonymous], 2002, 3831970 IS
[5]   Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers [J].
Barbosa, VFF ;
MacKenzie, KJD ;
Thaumaturgo, C .
INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 2000, 2 (04) :309-317
[6]   Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate [J].
Barbosa, VFF ;
MacKenzie, KJD .
MATERIALS RESEARCH BULLETIN, 2003, 38 (02) :319-331
[7]   Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans [J].
Bondar, Dali ;
Lynsdale, C. J. ;
Milestone, Neil B. ;
Hassani, N. ;
Ramezanianpour, A. A. .
CEMENT & CONCRETE COMPOSITES, 2011, 33 (02) :251-260
[8]  
Capros P., 2001, EC EVALUATION SECTOR
[9]  
Chanh NV, 2008, 3 ACF INT C AS CONCR
[10]   Fire-resistant geopolymer produced by granulated blast furnace slag [J].
Cheng, TW ;
Chiu, JP .
MINERALS ENGINEERING, 2003, 16 (03) :205-210