Advanced rechargeable zinc-air battery with parameter optimization

被引:80
|
作者
Wang, Keliang [1 ]
Pei, Pucheng [2 ]
Wang, Yichun [1 ]
Liao, Cheng [1 ]
Wang, Wei [1 ]
Huang, Shangwei [2 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Cycle life; Dendrite growth; Structure optimization; Electrolyte management; Magnetic field; Rechargeable zinc-air battery; OXYGEN REDUCTION REACTION; BIFUNCTIONAL ELECTROCATALYST; FUEL-CELL; PERFORMANCE; ANODE; TECHNOLOGIES; ELECTRODE; GROWTH; ENERGY;
D O I
10.1016/j.apenergy.2018.05.071
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Zinc-air batteries will be a promising candidate for storage energy and power supply due to their high specific energy, environmental compatibility, and economic availability. However, the problem of cycle life of rechargeable zinc-air battery remains unresolved mainly because of dendrite growth of electrodeposited zinc and performance degradation of air electrode. Here we show that rechargeable zinc-air battery with an optimized structure can stably run at large current densities, where air electrode is connected to the charging electrode through a stainless steel frame, and the effective area of charging electrode is larger than that of zinc electrode by way of a trapezoidal structure. This battery structure can control morphological change of zinc electrode and monitor dendrite growth without increasing the battery volume. The results demonstrate that the charge-discharge efficiency of rechargeable zinc-air battery can be improved by nickel foam as gas diffusion layer of air electrode, calcium oxide additive to the electrolyte, or a permanent magnet in parallel with the electrode. The lifetime of rechargeable zinc-air battery can be extended by electrolyte flow or battery structure optimization. These findings will be available for other metal-air batteries and electrolytic metal industry.
引用
收藏
页码:848 / 856
页数:9
相关论文
共 50 条
  • [1] Performance enhancement through parameter optimization for a rechargeable zinc-air flow battery
    Khezri, Ramin
    Parnianifard, Amir
    Motlagh, Shiva Rezaei
    Etesami, Mohammad
    Lao-atiman, Woranunt
    Abbasi, Ali
    Arpornwichanop, Amornchai
    Mohamad, Ahmad Azmin
    Olaru, Sorin
    Kheawhom, Soorathep
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 115 : 570 - 582
  • [3] Development of a rechargeable zinc-air battery
    Toussaint, Gwenaelle
    Stevens, Philippe
    Akrour, Laurent
    Rouget, Robert
    Fourgeot, Fabrice
    METAL/AIR AND METAL/WATER BATTERIES, 2010, 28 (32): : 25 - 34
  • [4] Optimized zinc electrode for the rechargeable zinc-air battery
    Müller, S
    Holzer, F
    Haas, O
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (09) : 895 - 898
  • [5] A rechargeable zinc-air battery based on zinc peroxide chemistry
    Sun, Wei
    Wang, Fei
    Zhang, Bao
    Zhang, Mengyi
    Kuepers, Verena
    Ji, Xiao
    Theile, Claudia
    Bieker, Peter
    Xu, Kang
    Wang, Chunsheng
    Winter, Martin
    SCIENCE, 2021, 371 (6524) : 46 - +
  • [6] Optimization of cell components and operating conditions in primary and rechargeable zinc-air battery
    Park, Ji Eun
    Lim, Myung Su
    Kim, Jong Kwan
    Choi, Hee Ji
    Sung, Yung-Eun
    Cho, Yong-Hun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 69 : 161 - 170
  • [7] ELECTRICALLY RECHARGEABLE ZINC-AIR TAPE BATTERY.
    Clifford, J.E.
    1600,
  • [8] Chemistry in rechargeable zinc-air battery: A mechanistic overview
    Singh, Arkaj
    Sharma, Ravinder
    Gautam, Akriti
    Kumar, Bhavnish
    Mittal, Sneha
    Halder, Aditi
    CATALYSIS TODAY, 2025, 445
  • [9] A design guide for rechargeable Zinc-air battery technology
    Cutler, T
    SOUTHCON/96 - CONFERENCE RECORD, 1996, : 616 - 621
  • [10] Recent advances in rechargeable zinc-air battery technology
    Sieminski, D
    TWELFTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, 1997, : 171 - 180