From Coalescing Random Walks on a Torus to Kingman's Coalescent

被引:2
作者
Beltran, J. [1 ,2 ]
Chavez, E. [3 ]
Landim, C. [3 ,4 ]
机构
[1] IMCA, Calle Biol 245, Lima 12, Peru
[2] PUCP, Av Univ Cdra 18,Ap 1761, Lima 100, Peru
[3] IMPA, Estr Dona Castorina 110, BR-22460 Rio De Janeiro, Brazil
[4] Univ Rouen, CNRS, UMR 6085, Ave Univ,BP 12,Technopole Madrillet, F-76801 St Etienne Du Rouvray, France
关键词
Interacting particle systems; Martingale problem; Markov chain model reduction; Kingman's coalescent; MODEL; TIME;
D O I
10.1007/s10955-019-02415-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let T-N(d), d >= 2, be the discrete d-dimensional torus with N-d points. Place a particle at each site of T-N(d) and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two particles meet, they coalesce into one. Denote by C-N the first time the set of particles is reduced to a singleton. Cox (Ann Probab 17:1333-1366, 1989) proved the existence of a time-scale theta(N) for which C-N/theta(N) converges to the sum of independent exponential random variables. Denote by Z(t)(N) the total number of particles at time t. We prove that the sequence of Markov chains (Z(t theta N)(N))(t >= 0) converges to the total number of partitions in Kingman's coalescent.
引用
收藏
页码:1172 / 1206
页数:35
相关论文
共 18 条
[1]  
Aldous D.J., 2001, REVERSIBLE MARKOV CH
[2]  
[Anonymous], 2009, Amer. Math. Soc.
[3]   Tunneling and Metastability of Continuous Time Markov Chains II, the Nonreversible Case [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) :598-618
[4]   Tunneling and Metastability of Continuous Time Markov Chains [J].
Beltran, J. ;
Landim, C. .
JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (06) :1065-1114
[5]   On the convergence of densities of finite voter models to the Wright-Fisher diffusion [J].
Chen, Yu-Ting ;
Choi, Jihyeok ;
Cox, J. Theodore .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01) :286-322
[6]   MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS [J].
Cooper, Colin ;
Frieze, Alan ;
Radzik, Tomasz .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) :1738-1761
[7]   COALESCING RANDOM-WALKS AND VOTER MODEL CONSENSUS TIMES ON THE TORUS IN ZD [J].
COX, JT .
ANNALS OF PROBABILITY, 1989, 17 (04) :1333-1366
[8]   Some features of the spread of epidemics and information on a random graph [J].
Durrett, Rick .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4491-4498
[9]   On spatial coalescents with multiple mergers in two dimensions [J].
Heuer, Benjamin ;
Sturm, Anja .
THEORETICAL POPULATION BIOLOGY, 2013, 87 :90-104
[10]   QUENCHED SCALING LIMITS OF TRAP MODELS [J].
Jara, Milton ;
Landim, Claudio ;
Teixeira, Augusto .
ANNALS OF PROBABILITY, 2011, 39 (01) :176-223