Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries

被引:1184
作者
Fan, Xiulin [1 ]
Chen, Long [1 ]
Borodin, Oleg [2 ]
Ji, Xiao [1 ]
Chen, Ji [1 ]
Hou, Singyuk [1 ]
Deng, Tao [1 ]
Zheng, Jing [1 ]
Yang, Chongyin [1 ]
Liou, Sz-Chian [3 ]
Amine, Khalil [4 ]
Xu, Kang [2 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] US Army Res Lab, Power & Energy Div Sensor & Electron Devices Dire, Electrochem Branch, Adelphi, MD 20783 USA
[3] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[4] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
LITHIUM-ION BATTERIES; TOTAL-ENERGY CALCULATIONS; FAILURE MECHANISMS; STABILITY; CARBONATE; SURFACE; DECOMPOSITION; PERFORMANCE; EFFICIENCY; INTERPHASE;
D O I
10.1038/s41565-018-0183-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Rechargeable Li-metal batteries using high-voltage cathodes can deliver the highest possible energy densities among all electrochemistries. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Here, we report a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Our battery shows high cycling stability, as evidenced by the efficiencies for Li-metal plating/stripping (99.2%) for a 5 V cathode LiCoPO4 (-99.81%) and a Ni-rich LiNi0.8Mn0.1,Co-0.3,O-2 cathode (-99.93%). At a loading of 2.0 mAh cm(-2), our full cells retain -93% of their original capacities after 1,000 cycles. Surface analyses and quantum chemistry calculations show that stabilization of these aggressive chemistries at extreme potentials is due to the formation of a several-nanometre-thick fluorinated interphase.
引用
收藏
页码:715 / +
页数:10
相关论文
共 69 条
[1]   Improved cycle life of Fe-substituted LiCoPO4 [J].
Allen, J. L. ;
Jow, T. R. ;
Wolfenstine, J. .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8656-8661
[2]  
[Anonymous], 2015, Gaussian 09, Revision D.01
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Special Synergy between Electrolyte Additives and Positive Electrode Surface Coating to Enhance the Performance of Li[Ni0.6Mn0.2Co0.2]O2/Graphite Cells [J].
Arumugam, Rajalakshmi Senthil ;
Ma, Lin ;
Li, Jing ;
Xia, Xin ;
Paulsen, J. M. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (13) :A2531-A2538
[5]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[6]   Ab lnitio Characterization of the Electrochemical Stability and Solvation Properties of Condensed-Phase Ethylene Carbonate and Dimethyl Carbonate Mixtures [J].
Barnes, Taylor A. ;
Kaminski, Jakub W. ;
Borodin, Oleg ;
Miller, Thomas F., III .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (08) :3865-3880
[7]  
Borodin O., 2014, ELECTROLYTES LITHIUM, V58
[8]   Towards high throughput screening of electrochemical stability of battery electrolytes [J].
Borodin, Oleg ;
Olguin, Marco ;
Spear, Carrie E. ;
Leiter, Kenneth W. ;
Knap, Jaroslaw .
NANOTECHNOLOGY, 2015, 26 (35)
[9]   Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes [J].
Borodin, Oleg ;
Behl, Wishvender ;
Jow, T. Richard .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (17) :8661-8682
[10]   Phase transitions occurring upon lithium insertion-extraction of LiCoPO4 [J].
Bramnik, Natalia N. ;
Nikolowski, Kristian ;
Baehtz, Carsten ;
Bramnik, Kirill G. ;
Ehrenberg, Helmut .
CHEMISTRY OF MATERIALS, 2007, 19 (04) :908-915