Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in R2

被引:12
作者
Albuquerque, Francisco S. B. [1 ]
Chen, Shang-Jie [2 ,3 ]
Li, Lin [2 ,3 ,4 ]
机构
[1] Univ Estadual Paraiba, Dept Matemat, BR-58429500 Campina Grande, Paraiba, Brazil
[2] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[3] Chongqing Technol & Business Univ, Chongqing Key Lab Social Econ & Appl Stat, Chongqing 400067, Peoples R China
[4] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Klein-Gordon equation; Born-Infeld theory; Trudinger-Moser inequality; unbounded or decaying radial potentials; critical exponential growth; Mountain-Pass Theorem; MAXWELL SYSTEM; MULTIPLE SOLUTIONS; EXISTENCE;
D O I
10.14232/ejqtde.2020.1.12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of nontrivial ground state solution for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in R-2 involving unbounded or decaying radial potentials. The approach involves variational methods combined with a Trudinger-Moser type inequality and a symmetric criticality type result.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 29 条
[1]   A singular Moser-Trudinger embedding and its applications [J].
Adimurthi ;
Sandeep, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 13 (5-6) :585-603
[2]   A WEIGHTED TRUDINGER-MOSER TYPE INEQUALITY AND ITS APPLICATIONS TO QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL GROWTH IN THE WHOLE EUCLIDEAN SPACE [J].
Albuquerque, Francisco S. B. ;
Aouaoui, Sami .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) :109-130
[3]   A Nonlinear Klein-Gordon-Maxwell System in R2 Involving Singular and Vanishing Potentials [J].
Albuquerque, Francisco S. B. ;
Li, Lin .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2019, 38 (02) :231-247
[4]   Nonlinear Schrodinger equation with unbounded or decaying radial potentials involving exponential critical growth in R2 [J].
Albuquerque, Francisco S. B. ;
Alves, Claudianor O. ;
Medeiros, Everaldo S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :1021-1031
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
[Anonymous], 2002, Electron. J. Differ. Equ
[7]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[8]   Spinning Q-Balls for the Klein-Gordon-Maxwell Equations [J].
Benci, Vieri ;
Fortunato, Donato .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :639-668
[9]   EXISTENCE RESULTS FOR THE KLEIN-GORDON-MAXWELL EQUATIONS IN HIGHER DIMENSIONS WITH CRITICAL EXPONENTS [J].
Carriao, Paulo C. ;
Cunha, Patricia L. ;
Miyagaki, Olimpio H. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (02) :709-718
[10]   Infinitely many Solutions for Klein-Gordon-Maxwell System with Potentials Vanishing at Infinity [J].
Chen, Shang-Jie ;
Li, Lin .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (01) :39-50