Multiplication between Hardy spaces and their dual spaces

被引:23
作者
Bonami, Aline [1 ]
Cao, Jun [2 ]
Ky, Luong Dang [3 ]
Liu, Liguang [4 ]
Yang, Dachun [5 ]
Yuan, Wen [5 ]
机构
[1] Univ Orleans, Inst Denis Poisson, UMR CNRS 7013, F-45067 Orleans 2, France
[2] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[3] Univ Quy Nhon, Dept Math, 170 Duong Vuong, Quy Nhon, Binh Dinh, Vietnam
[4] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[5] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 131卷
基金
中国国家自然科学基金;
关键词
Bilinear decomposition; Div-curl product; Hardy space; Campanato space; Musielak-Orlicz Hardy space; Pointwise multiplier; WAVELET CHARACTERIZATION; PRODUCTS; BMO; DECOMPOSITIONS; DETERMINANTS; LIPSCHITZ;
D O I
10.1016/j.matpur.2019.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any p is an element of (0, 1) and alpha = 1/p - 1, let H-p(R-n) and C-alpha (R-n) be the Hardy and the Campanato spaces on the R-n-dimensional Euclidean space R-n, respectively. In this article, the authors find suitable Musielak-Orlicz functions Phi(p), defined by setting, for any x is an element of R-n and t is an element of [0, infinity), Phi(p)(x, t) := {t/1+[t(1+vertical bar x vertical bar)(n)](1-p) when n(1/p-1) is not an element of N, T/1+[t(1+vertical bar x vertical bar)(n)](1-p)[log(1+vertical bar x vertical bar)](p) when n(1/p - 1) is an element of N, and then establish a bilinear decomposition theorem for multiplications of functions in H-p(R-n) and its dual space C-alpha(R-n). To be precise, for any f is an element of H-p(R-n) and g is an element of C-alpha(R-n), the authors prove that the product of f and g, viewed as a distribution, can be decomposed into S(f, g)+T(f, g), where S is a bilinear operator bounded from H-p(R-n) x C-alpha(R-n) to L-1(R-n) and T a bilinear operator bounded from H-p(R-n) x C-alpha(R-n) to the Musielak-Orlicz Hardy space H-Phi p(R-n) associated with the above Musielak-Orlicz function Phi(p). Such a bilinear decomposition is sharp when na N, in the sense that any other vector space Y subset of H-Phi p(R-n) adapted to the above bilinear decomposition should satisfy (L-1(R-n)+Y)* = (L-1(R-n) + H-Phi p(R-n)*. To obtain the sharpness, the authors establish a characterization of the class of pointwise multipliers of C-alpha(R-n) by means of the dual space of H-Phi p(R-n) which is of independent interest. As an application, an estimate of the div-curl product involving the space H-Phi p(R-n) is discussed. This article naturally extends the known sharp bilinear decomposition of H-1(R-n) x BMO (R-n). (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:130 / 170
页数:41
相关论文
共 48 条
[1]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[2]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[3]  
[Anonymous], 1996, 1 COURSE WAVELETS, DOI DOI 10.1201/9781420049985
[4]   Mappings of BMO-bounded distortion [J].
Astala, K ;
Iwaniec, T ;
Koskela, P ;
Martin, G .
MATHEMATISCHE ANNALEN, 2000, 317 (04) :703-726
[5]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[6]   On the product of functions in BMO and H1 [J].
Bonami, Aline ;
Iwaniec, Tadeusz ;
Jones, Peter ;
Zinsmeister, Michel .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) :1405-1439
[7]   Atomic decomposition and weak factorization in generalized Hardy spaces of closed forms [J].
Bonami, Aline ;
Feuto, Justin ;
Grellier, Sandrine ;
Ky, Luong Dang .
BULLETIN DES SCIENCES MATHEMATIQUES, 2017, 141 (07) :676-702
[8]   Factorization of some Hardy-type spaces of holomorphic functions [J].
Bonami, Aline ;
Luong Dang Ky .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (10) :817-821
[9]   Paraproducts and products of functions in BMO(Rn) and H1 (Rn) through wavelets [J].
Bonami, Aline ;
Grellier, Sandrine ;
Luong Dang Ky .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03) :230-241
[10]  
Bonami A, 2010, APPL NUMER HARMON AN, P57, DOI 10.1007/978-0-8176-4588-5_4