Experimental quantum-enhanced estimation of a lossy phase shift

被引:207
作者
Kacprowicz, M. [1 ]
Demkowicz-Dobrzanski, R. [1 ,2 ]
Wasilewski, W. [2 ]
Banaszek, K. [1 ,2 ]
Walmsley, I. A. [3 ]
机构
[1] Nicholas Copernicus Univ, Inst Phys, PL-87100 Torun, Poland
[2] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland
[3] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
CONTROLLED-NOT GATE; INTERFEROMETER; NOISE; LIMIT; INTERFERENCE; STATES;
D O I
10.1038/NPHOTON.2010.39
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A paradigm for quantum-enhanced precision metrology is found in optical interferometry(1), which is capable of sensing diverse physical quantities through measurement of a phase shift. When standard light sources are used, the precision of the phase determination is limited by shot noise, the origin of which can be traced to the random manner in which individual photons emerge from the interferometer. Quantum entanglement provides a means to exceed this limit(2-6) with the celebrated example of N00N states(7-10), which saturate the ultimate Heisenberg limit on precision(11), but are extremely fragile to losses(12-14). In contrast, we present experimental evidence that appropriately engineered quantum states(15) outperform both standard and N00N states in the precision of phase estimation when losses are present. This shows that the quantum enhancement of metrology is possible even when decoherence is present, and that the strategy for realizing the enhancement is quite distinct from protecting quantum information encoded in light(16,17).
引用
收藏
页码:357 / 360
页数:4
相关论文
共 30 条
[1]  
[Anonymous], 1993, FUNDAMENTALS STAT PR
[2]  
[Anonymous], 2003, Optical interferometry
[3]   Optimal frequency measurements with maximally correlated states [J].
Bollinger, JJ ;
Itano, WM ;
Wineland, DJ ;
Heinzen, DJ .
PHYSICAL REVIEW A, 1996, 54 (06) :R4649-R4652
[4]   Decoherence-free quantum information processing with four-photon entangled states [J].
Bourennane, M ;
Eibl, M ;
Gaertner, S ;
Kurtsiefer, C ;
Cabello, A ;
Weinfurter, H .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :107901-1
[5]   MAXIMUM-LIKELIHOOD ANALYSIS OF MULTIPLE QUANTUM PHASE MEASUREMENTS [J].
BRAUNSTEIN, SL ;
LANE, AS ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1992, 69 (15) :2153-2156
[6]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[7]   Quantum limits in image processing [J].
Delaubert, V. ;
Treps, N. ;
Fabre, C. ;
Bachor, H. A. ;
Refregier, P. .
EPL, 2008, 81 (04)
[8]   Quantum phase estimation with lossy interferometers [J].
Demkowicz-Dobrzanski, R. ;
Dorner, U. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW A, 2009, 80 (01)
[9]   Optimal Quantum Phase Estimation [J].
Dorner, U. ;
Demkowicz-Dobrzanski, R. ;
Smith, B. J. ;
Lundeen, J. S. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[10]   Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope [J].
Dowling, JP .
PHYSICAL REVIEW A, 1998, 57 (06) :4736-4746