Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells

被引:99
|
作者
Bao, Erik L. [1 ,2 ,3 ,4 ,5 ,9 ]
Nandakumar, Satish K. [1 ,2 ,3 ]
Liao, Xiaotian [1 ,2 ,3 ]
Bick, Alexander G. [3 ,5 ,6 ,7 ,8 ]
Karjalainen, Juha [9 ]
Tabaka, Marcin [3 ]
Gan, Olga, I [10 ,11 ]
Havulinna, Aki S. [9 ]
Kiiskinen, Tuomo T. J. [9 ]
Lareau, Caleb A. [1 ,2 ,3 ,12 ]
Portilla, Aitzkoa L. de Lapuente [13 ]
Li, Bo [3 ,14 ]
Emdin, Connor [3 ,5 ]
Codd, Veryan [15 ,16 ]
Nelson, Christopher P. [15 ,16 ]
Walker, Christopher J. [17 ]
Churchhouse, Claire [3 ]
de la Chapelle, Albert [17 ]
Klein, Daryl E. [18 ]
Nilsson, Bjorn [3 ,13 ]
Wilson, Peter W. F. [19 ,20 ]
Cho, Kelly [21 ,22 ]
Pyarajan, Saiju [21 ]
Gaziano, J. Michael [21 ,22 ]
Samani, Nilesh J. [15 ,16 ]
Regev, Aviv [3 ,23 ,24 ]
Palotie, Aarno [3 ,9 ]
Neale, Benjamin M. [3 ]
Dick, John E. [10 ,11 ]
Natarajan, Pradeep [3 ,5 ,25 ]
O'Donnell, Christopher J. [7 ,22 ]
Daly, Mark J. [3 ,9 ]
Milyavsky, Michael [26 ]
Kathiresan, Sekar [3 ,5 ,27 ]
Sankaran, Vijay G. [1 ,2 ,3 ,28 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Div Hematol Oncol, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Pediat Oncol, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Harvard Med Sch, Harvard MIT Hearth Sci & Technol, Boston, MA 02115 USA
[5] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Dept Med, Boston, MA 02114 USA
[7] VA Boston Healthcare, Sect Cardiol, Boston, MA USA
[8] Harvard Med Sch, Boston, MA 02115 USA
[9] Univ Helsinki, Inst Mol Med Finland FIMM, HiLIFE, Helsinki, Finland
[10] Univ Hearth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[11] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[12] Harvard Med Sch, Program Biol & Biomed Sci, Boston, MA 02115 USA
[13] Lund Univ, Dept Lab Med, Hematol & Transfus Med, Lund, Sweden
[14] Massachusetts Gen Hosp, Div Rheumatol Allergy & Immunol, Ctr Immunol & Inflammatory Dis, Boston, MA 02114 USA
[15] Glenfield Hosp, Dept Cardiovasc Sci, Leicester, Leics, England
[16] Glenflerd Hosp, Natl Inst Hearth Res NIHR Leicester Biomed Ctr, Leicester, Leics, England
[17] Ohio State Univ, Comprehens Canc Ctr, Dept Canc Biol & Genet, Columbus, OH 43210 USA
[18] Yale Univ, Sch Med, Canc Biol Inst, Dept Pharmacol, West Haven, CT 06516 USA
[19] Atlanta VA Med Ctr, Atlanta, GA USA
[20] Emory Clin Cardiovasc Res Inst, Atlanta, GA USA
[21] VA Boston Hearthcare Syst, Massachusetts Vet Epidemiol Res & Informat Ctr MA, Boston, MA USA
[22] Brigham & Womens Hosp, Dept Med, 75 Francis St, Boston, MA 02115 USA
[23] Howard Hughes Med Inst, Chevy Chase, MD USA
[24] MIT, Dept Biol, Koch Inst, Cambridge, MA USA
[25] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA
[26] Tel Aviv Univ, Sackler Fac Med, Dept Pathol, Tel Aviv, Israel
[27] Verve Therapeut, Cambridge, MA USA
[28] Harvard Stem Cell Inst, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
SELF-RENEWAL; ASSOCIATION ANALYSIS; JAK2; HAPLOTYPE; BREAST-CANCER; SINGLE-CELL; VARIANTS; GENE; TELOMERASE; BLOOD; THROMBOPOIETIN;
D O I
10.1038/s41586-020-2786-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers(1). However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 x 10(-8)), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.
引用
收藏
页码:769 / 775
页数:31
相关论文
共 50 条
  • [41] VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells
    Pinho, Sandra
    Wei, Qiaozhi
    Maryanovich, Maria
    Zhang, Dachuan
    Balandran, Juan Carlos
    Pierce, Halley
    Nakahara, Fumio
    Di Staulo, Anna
    Bartholdy, Boris A.
    Xus, Jianing
    Borger, Daniel K.
    Verma, Amit
    Frenette, Paul S.
    NATURE CELL BIOLOGY, 2022, 24 (03) : 290 - +
  • [42] The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells
    Sirin, Olga
    Lukov, Georgi L.
    Mao, Rui
    Conneely, Orla M.
    Goodell, Margaret A.
    NATURE CELL BIOLOGY, 2010, 12 (12) : 1213 - U210
  • [43] Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies
    Buisman, Sonja C.
    de Haan, Gerald
    CELLS, 2019, 8 (08)
  • [44] Manipulating niche composition limits damage to haematopoietic stem cells during Plasmodium infection
    Haltalli, Myriam L. R.
    Watcham, Samuel
    Wilson, Nicola K.
    Eilers, Kira
    Lipien, Alexander
    Ang, Heather
    Birch, Flora
    Anton, Sara Gonzalez
    Pirillo, Chiara
    Ruivo, Nicola
    Vainieri, Maria L.
    Pospori, Constandina
    Sinden, Robert E.
    Luis, Tiago C.
    Langhorne, Jean
    Duffy, Ken R.
    Gottgens, Berthold
    Blagborough, Andrew M.
    Lo Celso, Cristina
    NATURE CELL BIOLOGY, 2020, 22 (12) : 1399 - +
  • [45] Comprehensive transcriptome analysis of erythroid differentiation potential of olive leaf in haematopoietic stem cells
    Kondo, Shinji
    Ferdousi, Farhana
    Yamauchi, Ken
    Suidasari, Sofya
    Yokozawa, Miki
    Harrabi, Mohamed Moncef
    Tominaga, Ken-ichi
    Isoda, Hiroko
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2021, 25 (15) : 7229 - 7243
  • [46] Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis
    Dong, Fang
    Hao, Sha
    Zhang, Sen
    Zhu, Caiying
    Cheng, Hui
    Yang, Zining
    Hamey, Fiona K.
    Wang, Xiaofang
    Gao, Ai
    Wang, Fengjiao
    Gao, Yun
    Dong, Ji
    Wang, Chenchen
    Wang, Jinyong
    Lan, Yu
    Liu, Bing
    Ema, Hideo
    Tang, Fuchou
    Gottgens, Berthold
    Zhu, Ping
    Cheng, Tao
    NATURE CELL BIOLOGY, 2020, 22 (06) : 630 - +
  • [47] Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    Nakada, Daisuke
    Saunders, Thomas L.
    Morrison, Sean J.
    NATURE, 2010, 468 (7324) : 653 - U69
  • [48] RETRACTED: Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease (Retracted article. See vol. 8, Art no 14005, 2017)
    Herrera-Merchan, A.
    Arranz, L.
    Ligos, J. M.
    de Molina, A.
    Dominguez, O.
    Gonzalez, S.
    NATURE COMMUNICATIONS, 2012, 3
  • [49] Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry
    Demange, Elise
    Kassim, Yusra
    Petit, Cyrille
    Buquet, Catherine
    Dulong, Virginie
    Le Cerf, Didier
    Buchonnet, Gerard
    Vannier, Jean-Pierre
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2013, 7 (11) : 901 - 910
  • [50] Regulation of haematopoietic stem cells self-renenwal and the role of wnt signaling in the process
    Zhang, HJ
    Miao, ZC
    Wang, Y
    Feng, MF
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2004, 31 (07) : 579 - 583