Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells

被引:100
|
作者
Bao, Erik L. [1 ,2 ,3 ,4 ,5 ,9 ]
Nandakumar, Satish K. [1 ,2 ,3 ]
Liao, Xiaotian [1 ,2 ,3 ]
Bick, Alexander G. [3 ,5 ,6 ,7 ,8 ]
Karjalainen, Juha [9 ]
Tabaka, Marcin [3 ]
Gan, Olga, I [10 ,11 ]
Havulinna, Aki S. [9 ]
Kiiskinen, Tuomo T. J. [9 ]
Lareau, Caleb A. [1 ,2 ,3 ,12 ]
Portilla, Aitzkoa L. de Lapuente [13 ]
Li, Bo [3 ,14 ]
Emdin, Connor [3 ,5 ]
Codd, Veryan [15 ,16 ]
Nelson, Christopher P. [15 ,16 ]
Walker, Christopher J. [17 ]
Churchhouse, Claire [3 ]
de la Chapelle, Albert [17 ]
Klein, Daryl E. [18 ]
Nilsson, Bjorn [3 ,13 ]
Wilson, Peter W. F. [19 ,20 ]
Cho, Kelly [21 ,22 ]
Pyarajan, Saiju [21 ]
Gaziano, J. Michael [21 ,22 ]
Samani, Nilesh J. [15 ,16 ]
Regev, Aviv [3 ,23 ,24 ]
Palotie, Aarno [3 ,9 ]
Neale, Benjamin M. [3 ]
Dick, John E. [10 ,11 ]
Natarajan, Pradeep [3 ,5 ,25 ]
O'Donnell, Christopher J. [7 ,22 ]
Daly, Mark J. [3 ,9 ]
Milyavsky, Michael [26 ]
Kathiresan, Sekar [3 ,5 ,27 ]
Sankaran, Vijay G. [1 ,2 ,3 ,28 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Div Hematol Oncol, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Pediat Oncol, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Harvard Med Sch, Harvard MIT Hearth Sci & Technol, Boston, MA 02115 USA
[5] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Dept Med, Boston, MA 02114 USA
[7] VA Boston Healthcare, Sect Cardiol, Boston, MA USA
[8] Harvard Med Sch, Boston, MA 02115 USA
[9] Univ Helsinki, Inst Mol Med Finland FIMM, HiLIFE, Helsinki, Finland
[10] Univ Hearth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[11] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[12] Harvard Med Sch, Program Biol & Biomed Sci, Boston, MA 02115 USA
[13] Lund Univ, Dept Lab Med, Hematol & Transfus Med, Lund, Sweden
[14] Massachusetts Gen Hosp, Div Rheumatol Allergy & Immunol, Ctr Immunol & Inflammatory Dis, Boston, MA 02114 USA
[15] Glenfield Hosp, Dept Cardiovasc Sci, Leicester, Leics, England
[16] Glenflerd Hosp, Natl Inst Hearth Res NIHR Leicester Biomed Ctr, Leicester, Leics, England
[17] Ohio State Univ, Comprehens Canc Ctr, Dept Canc Biol & Genet, Columbus, OH 43210 USA
[18] Yale Univ, Sch Med, Canc Biol Inst, Dept Pharmacol, West Haven, CT 06516 USA
[19] Atlanta VA Med Ctr, Atlanta, GA USA
[20] Emory Clin Cardiovasc Res Inst, Atlanta, GA USA
[21] VA Boston Hearthcare Syst, Massachusetts Vet Epidemiol Res & Informat Ctr MA, Boston, MA USA
[22] Brigham & Womens Hosp, Dept Med, 75 Francis St, Boston, MA 02115 USA
[23] Howard Hughes Med Inst, Chevy Chase, MD USA
[24] MIT, Dept Biol, Koch Inst, Cambridge, MA USA
[25] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA
[26] Tel Aviv Univ, Sackler Fac Med, Dept Pathol, Tel Aviv, Israel
[27] Verve Therapeut, Cambridge, MA USA
[28] Harvard Stem Cell Inst, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
SELF-RENEWAL; ASSOCIATION ANALYSIS; JAK2; HAPLOTYPE; BREAST-CANCER; SINGLE-CELL; VARIANTS; GENE; TELOMERASE; BLOOD; THROMBOPOIETIN;
D O I
10.1038/s41586-020-2786-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers(1). However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 x 10(-8)), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.
引用
收藏
页码:769 / 775
页数:31
相关论文
共 50 条
  • [31] Maintenance of human haematopoietic stem and progenitor cells in vitro using a chemical cocktail
    Jiang, Mengmeng
    Chen, Haide
    Lai, Shujing
    Wang, Renying
    Qiu, Yunfei
    Ye, Fang
    Fei, Lijiang
    Sun, Huiyu
    Xu, Yang
    Jiang, Xinyi
    Zhou, Ziming
    Zhang, Tingyue
    Li, Yanwei
    Xie, Jin
    Fang, Qun
    Gale, Robert Peter
    Han, Xiaoping
    Huang, He
    Guo, Guoji
    CELL DISCOVERY, 2018, 4
  • [32] Haematopoietic stem cells derive directly from aortic endothelium during development
    Bertrand, Julien Y.
    Chi, Neil C.
    Santoso, Buyung
    Teng, Shutian
    Stainier, Didier Y. R.
    Traver, David
    NATURE, 2010, 464 (7285) : 108 - U120
  • [33] Xpg limits the expansion of haematopoietic stem and progenitor cells after ionising radiation
    Avila, Alush I.
    Illing, Anett
    Becker, Friedrich
    Maerz, Lars D.
    Morita, Yohei
    Philipp, Melanie
    Burkhalter, Martin D.
    NUCLEIC ACIDS RESEARCH, 2016, 44 (13) : 6252 - 6261
  • [34] The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells
    Maryanovich, Maria
    Oberkovitz, Galia
    Niv, Hagit
    Vorobiyov, Lidiya
    Zaltsman, Yehudit
    Brenner, Ori
    Lapidot, Tsvee
    Jung, Steffen
    Gross, Atan
    NATURE CELL BIOLOGY, 2012, 14 (05) : 535 - U185
  • [35] Lineage Decision-Making within Normal Haematopoietic and Leukemic Stem Cells
    Brown, Geoffrey
    Sanchez, Lucia
    Sanchez-Garcia, Isidro
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (06)
  • [36] Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms
    Cruceru, Maria Linda
    Neagu, Monica
    Demoulin, Jean-Baptiste
    Constantinescu, Stefan N.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2013, 17 (10) : 1218 - 1235
  • [37] Regulation of the Flt3 Gene in Haematopoietic Stem and Early Progenitor Cells
    Volpe, Giacomo
    Clarke, Mary
    Garcia, Paloma
    Walton, David Scott
    Vegiopoulos, Alexandros
    Del Pozzo, Walter
    O'Neill, Laura Patricia
    Frampton, Jonathan
    Dumon, Stephanie
    PLOS ONE, 2015, 10 (09):
  • [38] Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells
    Carrelha, Joana
    Meng, Yiran
    Kettyle, Laura M.
    Luis, Tiago C.
    Norfo, Ruggiero
    Alcolea, Veronica
    Boukarabila, Hanane
    Grasso, Francesca
    Gambardella, Adriana
    Grover, Amit
    Hogstrand, Kari
    Lord, Allegra M.
    Sanjuan-Pla, Alejandra
    Woll, Petter S.
    Nerlov, Claus
    Jacobsen, Sten Eirik W.
    NATURE, 2018, 554 (7690) : 106 - +
  • [39] Low risk of hepatitis E virus reactivation after haematopoietic stem cell transplantation
    Abravanel, Florence
    Mansuy, Jean-Michel
    Huynh, Anne
    Kamar, Nassim
    Alric, Laurent
    Peron, Jean-Marie
    Recher, Christian
    Izopet, Jacques
    JOURNAL OF CLINICAL VIROLOGY, 2012, 54 (02) : 152 - 155
  • [40] Is cytomegalovirus a risk factor for haemorrhagic cystitis in allogeneic haematopoietic stem cell transplantation recipients?
    Atilla, Erden
    Yalciner, Merih
    Ailla, Pinar Ataca
    Ates, Can
    Bozdag, Sinem Civriz
    Yuksel, Meltem Kurt
    Toprak, Selami Kocak
    Gunduz, Mehmet
    Ozen, Mehmet
    Akan, Hamdi
    Demirer, Taner
    Arslan, Onder
    Ilhan, Osman
    Beksac, Meral
    Ozcan, Muhit
    Gurman, Gunhan
    Topcuoglu, Pervin
    ANTIVIRAL THERAPY, 2018, 23 (08) : 647 - 653