Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells

被引:100
|
作者
Bao, Erik L. [1 ,2 ,3 ,4 ,5 ,9 ]
Nandakumar, Satish K. [1 ,2 ,3 ]
Liao, Xiaotian [1 ,2 ,3 ]
Bick, Alexander G. [3 ,5 ,6 ,7 ,8 ]
Karjalainen, Juha [9 ]
Tabaka, Marcin [3 ]
Gan, Olga, I [10 ,11 ]
Havulinna, Aki S. [9 ]
Kiiskinen, Tuomo T. J. [9 ]
Lareau, Caleb A. [1 ,2 ,3 ,12 ]
Portilla, Aitzkoa L. de Lapuente [13 ]
Li, Bo [3 ,14 ]
Emdin, Connor [3 ,5 ]
Codd, Veryan [15 ,16 ]
Nelson, Christopher P. [15 ,16 ]
Walker, Christopher J. [17 ]
Churchhouse, Claire [3 ]
de la Chapelle, Albert [17 ]
Klein, Daryl E. [18 ]
Nilsson, Bjorn [3 ,13 ]
Wilson, Peter W. F. [19 ,20 ]
Cho, Kelly [21 ,22 ]
Pyarajan, Saiju [21 ]
Gaziano, J. Michael [21 ,22 ]
Samani, Nilesh J. [15 ,16 ]
Regev, Aviv [3 ,23 ,24 ]
Palotie, Aarno [3 ,9 ]
Neale, Benjamin M. [3 ]
Dick, John E. [10 ,11 ]
Natarajan, Pradeep [3 ,5 ,25 ]
O'Donnell, Christopher J. [7 ,22 ]
Daly, Mark J. [3 ,9 ]
Milyavsky, Michael [26 ]
Kathiresan, Sekar [3 ,5 ,27 ]
Sankaran, Vijay G. [1 ,2 ,3 ,28 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Div Hematol Oncol, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Pediat Oncol, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Harvard Med Sch, Harvard MIT Hearth Sci & Technol, Boston, MA 02115 USA
[5] Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Dept Med, Boston, MA 02114 USA
[7] VA Boston Healthcare, Sect Cardiol, Boston, MA USA
[8] Harvard Med Sch, Boston, MA 02115 USA
[9] Univ Helsinki, Inst Mol Med Finland FIMM, HiLIFE, Helsinki, Finland
[10] Univ Hearth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[11] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[12] Harvard Med Sch, Program Biol & Biomed Sci, Boston, MA 02115 USA
[13] Lund Univ, Dept Lab Med, Hematol & Transfus Med, Lund, Sweden
[14] Massachusetts Gen Hosp, Div Rheumatol Allergy & Immunol, Ctr Immunol & Inflammatory Dis, Boston, MA 02114 USA
[15] Glenfield Hosp, Dept Cardiovasc Sci, Leicester, Leics, England
[16] Glenflerd Hosp, Natl Inst Hearth Res NIHR Leicester Biomed Ctr, Leicester, Leics, England
[17] Ohio State Univ, Comprehens Canc Ctr, Dept Canc Biol & Genet, Columbus, OH 43210 USA
[18] Yale Univ, Sch Med, Canc Biol Inst, Dept Pharmacol, West Haven, CT 06516 USA
[19] Atlanta VA Med Ctr, Atlanta, GA USA
[20] Emory Clin Cardiovasc Res Inst, Atlanta, GA USA
[21] VA Boston Hearthcare Syst, Massachusetts Vet Epidemiol Res & Informat Ctr MA, Boston, MA USA
[22] Brigham & Womens Hosp, Dept Med, 75 Francis St, Boston, MA 02115 USA
[23] Howard Hughes Med Inst, Chevy Chase, MD USA
[24] MIT, Dept Biol, Koch Inst, Cambridge, MA USA
[25] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA
[26] Tel Aviv Univ, Sackler Fac Med, Dept Pathol, Tel Aviv, Israel
[27] Verve Therapeut, Cambridge, MA USA
[28] Harvard Stem Cell Inst, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
SELF-RENEWAL; ASSOCIATION ANALYSIS; JAK2; HAPLOTYPE; BREAST-CANCER; SINGLE-CELL; VARIANTS; GENE; TELOMERASE; BLOOD; THROMBOPOIETIN;
D O I
10.1038/s41586-020-2786-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Myeloproliferative neoplasms (MPNs) are blood cancers that are characterized by the excessive production of mature myeloid cells and arise from the acquisition of somatic driver mutations in haematopoietic stem cells (HSCs). Epidemiological studies indicate a substantial heritable component of MPNs that is among the highest known for cancers(1). However, only a limited number of genetic risk loci have been identified, and the underlying biological mechanisms that lead to the acquisition of MPNs remain unclear. Here, by conducting a large-scale genome-wide association study (3,797 cases and 1,152,977 controls), we identify 17 MPN risk loci (P < 5.0 x 10(-8)), 7 of which have not been previously reported. We find that there is a shared genetic architecture between MPN risk and several haematopoietic traits from distinct lineages; that there is an enrichment for MPN risk variants within accessible chromatin of HSCs; and that increased MPN risk is associated with longer telomere length in leukocytes and other clonal haematopoietic states-collectively suggesting that MPN risk is associated with the function and self-renewal of HSCs. We use gene mapping to identify modulators of HSC biology linked to MPN risk, and show through targeted variant-to-function assays that CHEK2 and GFI1B have roles in altering the function of HSCs to confer disease risk. Overall, our results reveal a previously unappreciated mechanism for inherited MPN risk through the modulation of HSC function.
引用
收藏
页码:769 / 775
页数:31
相关论文
共 50 条
  • [21] Haematopoietic stem cells in perisinusoidal niches are protected from ageing
    Sacma, Mehmet
    Pospiech, Johannes
    Bogeska, Ruzhica
    de Back, Walter
    Mallm, Jan-Philipp
    Sakk, Vadim
    Soller, Karin
    Marka, Gina
    Vollmer, Angelika
    Karns, Rebekah
    Cabezas-Wallscheid, Nina
    Trumpp, Andreas
    Mendez-Ferrer, Simon
    Milsom, Michael D.
    Mulaw, Medhanie A.
    Geiger, Hartmut
    Carolina Florian, Maria
    NATURE CELL BIOLOGY, 2019, 21 (11) : 1309 - +
  • [22] Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells
    Loeffler, Dirk
    Wehling, Arne
    Schneiter, Florin
    Zhang, Yang
    Muller-Botticher, Niklas
    Hoppe, Philipp S.
    Hilsenbeck, Oliver
    Kokkaliaris, Konstantinos D.
    Endele, Max
    Schroeder, Timm
    NATURE, 2019, 573 (7774) : 426 - +
  • [23] Hydrogel-based microenvironment engineering of haematopoietic stem cells
    Zhu, Meng
    Wang, Qiwei
    Gu, Tianning
    Han, Yingli
    Zeng, Xin
    Li, Jinxin
    Dong, Jian
    Huang, He
    Qian, Pengxu
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2023, 80 (02)
  • [24] FLT3-ITD Knockin Impairs Hematopoietic Stem Cell Quiescence/Homeostasis, Leading to Myeloproliferative Neoplasm
    Chu, S. Haihua
    Heiser, Diane
    Li, Li
    Kaplan, Ian
    Collector, Michael
    Huso, David
    Sharkis, Saul J.
    Civin, Curt
    Small, Don
    CELL STEM CELL, 2012, 11 (03) : 346 - 358
  • [25] Haematopoietic stem cells require a highly regulated protein synthesis rate
    Signer, Robert A. J.
    Magee, Jeffrey A.
    Salic, Adrian
    Morrison, Sean J.
    NATURE, 2014, 509 (7498) : 49 - +
  • [26] Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
    Mendez-Ferrer, Simon
    Michurina, Tatyana V.
    Ferraro, Francesca
    Mazloom, Amin R.
    MacArthur, Ben D.
    Lira, Sergio A.
    Scadden, David T.
    Ma'ayan, Avi
    Enikolopov, Grigori N.
    Frenette, Paul S.
    NATURE, 2010, 466 (7308) : 829 - U59
  • [27] Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells
    Nakahara, Fumio
    Borger, Daniel K.
    Wei, Qiaozhi
    Pinho, Sandra
    Maryanovich, Maria
    Zahalka, Ali H.
    Suzuki, Masako
    Cruz, Cristian D.
    Wang, Zichen
    Xu, Chunliang
    Boulais, Philip E.
    Ma'ayan, Avi
    Greally, John M.
    Frenette, Paul S.
    NATURE CELL BIOLOGY, 2019, 21 (05) : 560 - +
  • [28] Repopulation dynamics of single haematopoietic stem cells in mouse transplantation experiments: Importance of stem cell composition in competitor cells
    Ema, Hideo
    Uchinomiya, Kouki
    Morita, Yohei
    Suda, Toshio
    Iwasa, Yoh
    JOURNAL OF THEORETICAL BIOLOGY, 2016, 394 : 57 - 67
  • [29] Carica papaya induces in vitro thrombopoietic cytokines secretion by mesenchymal stem cells and haematopoietic cells
    Aziz, Jazli
    Abu Kassim, Noor Lide
    Abu Kasim, Noor Hayaty
    Haque, Nazmul
    Rahman, Mohammad Tariqur
    BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2015, 15
  • [30] Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity
    Ross, Jason B.
    Myers, Lara M.
    Noh, Joseph J.
    Collins, Madison M.
    Carmody, Aaron B.
    Messer, Ronald J.
    Dhuey, Erica
    Hasenkrug, Kim J.
    Weissman, Irving L.
    NATURE, 2024, 628 (8009) : 162 - 170