Windowed Fourier transform of two-dimensional quaternionic signals

被引:47
作者
Bahri, Mawardi [2 ]
Hitzer, Eckhard S. M. [3 ]
Ashino, Ryuichi [4 ]
Vaillancourt, Remi [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[2] Hasanuddin Univ, Dept Math, Tamalanrea Makassar, Indonesia
[3] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan
[4] Osaka Kyoiku Univ, Div Math Sci, Osaka 5828582, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
Quaternionic Fourier transform; Quaternionic windowed Fourier transform; Signal processing; Heisenberg type uncertainty principle; PRINCIPLES; FIELDS;
D O I
10.1016/j.amc.2010.03.082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize the classical windowed Fourier transform (WFT) to quaternion-valued signals, called the quaternionic windowed Fourier transform (QWFT). Using the spectral representation of the quaternionic Fourier transform (QFT), we derive several important properties such as reconstruction formula, reproducing kernel, isometry, and orthogonality relation. Taking the Gaussian function as window function we obtain quaternionic Gabor filters which play the role of coefficient functions when decomposing the signal in the quaternionic Gabor basis. We apply the QWFT properties and the (right-sided) QFT to establish a Heisenberg type uncertainty principle for the QWFT. Finally, we briefly introduce an application of the QWFT to a linear time-varying system. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2366 / 2379
页数:14
相关论文
共 26 条
  • [1] An uncertainty principle for quaternion Fourier transform
    Bahri, Mawardi
    Hitzer, Eckhard S. M.
    Hayashi, Akihisa
    Ashino, Ryuichi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2398 - 2410
  • [2] Quaternion fourier descriptors for the preprocessing and recognition of spoken words using images of spatiotemporal representations
    Bayro-Corrochano, Eduardo
    Trujillo, Noel
    Naranjo, Michel
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) : 179 - 190
  • [3] Bülow T, 2001, GEOMETRIC COMPUTING WITH CLIFFORD ALGEBRAS, P187
  • [4] Bulow T., 1999, Ph.D. thesis
  • [5] Chui C., 1992, An introduction to wavelets, V1, DOI [10.2307/2153134, DOI 10.2307/2153134]
  • [6] ELL TA, 1993, PROCEEDINGS OF THE 32ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P1830, DOI 10.1109/CDC.1993.325510
  • [7] Time-varying filter interpretation of Fourier transform and its variants
    Ghosh, Prasanta Kumar
    Sreenivas, T. V.
    [J]. SIGNAL PROCESSING, 2006, 86 (11) : 3258 - 3263
  • [8] Hardy's theorem and the short-time Fourier transform of Schwartz functions
    Gröchenig, K
    Zimmermann, G
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 : 205 - 214
  • [9] Grochenig K, 2001, Foundations of Time-Frequency Analysis. Applied andNumerical Harmonic Analysis, DOI DOI 10.1007/978-1-4612-0003-1
  • [10] Gurlebeck K., 1997, Quaternionic and Clifford Calculus for Physicists and Engineers