HERMITE-HADAMARD'S INEQUALITIES FOR η-CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS AND RELATED INEQUALITIES

被引:0
作者
Khan, M. Adil [1 ]
Khurshid, Y. [1 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar, Pakistan
来源
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE | 2021年 / 90卷 / 02期
关键词
Convex function; Hermite-Hadamard inequality; fractional integrals; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a Hermite-Hadamard inequality for conformable fractional integrals by using eta-convex functions. We also establish an identity associated with the right hand side of Hermite-Hadamard inequality for eta-convex functions, then by using this identity and n-convexity of functions, and some well-known inequalities, we find several new Hermite-Hadamard type inequalities for conformal fractional integrals.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 58 条
  • [1] Abdeljawad T., 2018, J INEQUAL APPL, V2018, P1
  • [2] A generalized Lyapunov-type inequality in the frame of conformable derivatives
    Abdeljawad, Thabet
    Alzabut, Jehad
    Jarad, Fahd
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [3] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [4] AN EXTENSION BY MEANS OF ω-WEIGHTED CLASSES OF THE GENERALIZED RIEMANN-LIOUVILLE k-FRACTIONAL INTEGRAL INEQUALITIES
    Agarwal, P.
    Restrepo, J. E.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 35 - 46
  • [5] Akdemir AO, 2017, J NONLINEAR CONVEX A, V18, P661
  • [6] Fundamental Results of Conformable Sturm-Liouville Eigenvalue Problems
    Al-Refai, Mohammed
    Abdeljawad, Thabet
    [J]. COMPLEXITY, 2017,
  • [7] Certain new models of the multi space-fractional Gardner equation
    Alderremy, A. A.
    Saad, Khaled M.
    Agarwal, Praveen
    Aly, Shaban
    Jain, Shilpi
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545
  • [8] AlNemer G., 2020, SYMMETRY, V12, P1
  • [9] Anderson D. R, 2016, TAYLORS FORMULA INTE
  • [10] Inequalities for α-fractional differentiable functions
    Chu, Yu-Ming
    Khan, Muhammad Adil
    Ali, Tahir
    Dragomir, Sever Silvestru
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,