The universal dynamics of cell spreading

被引:212
作者
Cuvelier, Damien
Thery, Manuel
Chu, Yeh-Shiu
Dufour, Sylvie
Thiery, Jean-Paul
Bornens, Michel
Nassoy, Pierre
Mahadevan, L.
机构
[1] Physical Chemistry Curie, UMR 168, Institut Curie
[2] Biology of Cell Cycle and Cell Motility, UMR 144, Institut Curie
[3] Cellular Morphogenesis and Tumor Progression, UMR 144, Institut Curie
[4] Division of Engineering and Applied Sciences, Harvard University, Cambridge
[5] Department of Systems Biology, Harvard Medical School, Boston
[6] Institute of Life Sciences Research and Technologies, Laboratoire Biopuces, 38054 Grenoble, Commissariat a l'Energie Atomique
[7] Institute of Molecular and Cell Biology, 138673
关键词
CELLBIO;
D O I
10.1016/j.cub.2007.02.058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cell adhesion and motility depend strongly on the interactions between cells and extracellular matrix (ECM) substrates. When plated onto artificial adhesive surfaces, cells first flatten and deform extensively as they spread. At the molecular level, the interaction of membrane-based integrins with the ECM has been shown to initiate a complex cascade of signaling events [1], which subsequently triggers cellular morphological changes and results in the generation of contractile forces [2]. Here, we focus on the early stages of cell spreading and probe their dynamics by quantitative visualization and biochemical manipulation with a variety of cell types and adhesive surfaces, adhesion receptors, and cytoskeleton-altering drugs. We find that the dynamics of adhesion follows a universal power-law behavior. This is in sharp contrast with the common belief that spreading is regulated by either the diffusion of adhesion receptors toward the growing adhesive patch [3-5] or by actin polymerization [6-8]. To explain this, we propose a simple quantitative and predictive theory that models cells as viscous adhesive cortical shells enclosing a less viscous interior. Thus, although cell spreading is driven by well-identified biomolecular interactions, it is dynamically limited by its mesoscopic structure and material properties. © 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:694 / 699
页数:6
相关论文
共 25 条
[1]  
Zamir E., Geiger B., Components of cell-matrix adhesions, J. Cell Sci., 114, pp. 3577-3579, (2001)
[2]  
Balaban N.Q., Schwarz U.S., Riveline D., Goichberg P., Tzur G., Sabanay I., Mahalu D., Safran S., Bershadsky A., Addadi L., Et al., Force and focal adhesion assembly: A close relationship studied using elastic micro-patterned substrates, Nat. Cell Biol., 3, pp. 466-472, (2001)
[3]  
Dustin M.L., Ferguson L.M., Chan P.Y., Springer T.A., Golan D.E., Vizualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area, J. Cell Biol., 132, pp. 465-477, (1996)
[4]  
Yauch R.L., Felsenfeld D.P., Kraeft S.K., Chen L.B., Sheetz M.P., Hemler M.E., Mutational evidence for control of cell adhesion through integrin diffusion/clustering, independent of ligand binding, J. Exp. Med., 186, pp. 1347-1355, (1997)
[5]  
Shenoy V.B., Freund L.B., Growth and shape stability of a biological membrane adhesion complex in the diffusion-mediated regime, Proc. Natl. Acad. Sci. USA, 102, pp. 3213-3218, (2005)
[6]  
Chamaraux F., Fache S., Bruckert F., Fourcade B., Kinetics of cell spreading, Phys. Rev. Lett., 94, (2005)
[7]  
Bereiter-Hahn J., Luck M., Miebach T., Stelzer H.K., Voth M., Spreading of trypsinized cells: Cytoskeletal dynamics and energy requirements, J. Cell Sci., 96, pp. 171-188, (1990)
[8]  
Cai Y., Biais N., Gianone G., Tanase M., Ladoux B., Hofman J., Wiggins C.H., Sheetz M.P., Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow, Biophys. J., 91, pp. 3907-3920, (2006)
[9]  
Bruinsma R., Sackmann E., Bioadhesion and the dewetting transition, Comptes Rendus de l'Academie des Sciences Series IV, 2, pp. 803-815, (2001)
[10]  
Dubin-Thaler B.J., Giannone G., Dobereiner H.G., Sheetz M.P., Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs, Biophys. J., 86, pp. 1794-1806, (2004)