On the Class of Potentials with Trivial Monodromy

被引:3
作者
Ishkin, Khabir [1 ]
Marvanov, Rustem [1 ]
机构
[1] Bashkir State Univ, Ufa 450076, Russia
基金
俄罗斯基础研究基金会;
关键词
Sturm-Liouville equation; trivial monodromy; spectral instability; spectrum localization; CRITERION; LOCALIZATION; ADJOINT;
D O I
10.1134/S199508022106010X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a simple-connected domain, Z = {z(k) is an element of Omega, k = 1, N} (N <= infinity), and let TM(Omega, Z) be a set of functions meromorphic in Omega and satisfying at each its pole z(k) the trivial monodromy condition. The criterion for trivial monodromy is well known (it was established by Duistermaat and Gru<spacing diaeresis> nbaum in 1987). However, this criterion is of a local nature. It is impossible to extract from it any information about the structure of the set TM(Omega, Z). In this paper, we obtaine an explicit description of the set TM(Omega, Z) for N < infinity. In the case N = infinity, we establishe a certain analogue of theMittag-Leffler theorem: for any sequence of natural numbers {m(k)} there exists a function q is an element of TM(Omega, Z), which at each point z(k) satisfies the Duistermaat-Grunbaum condition with indicator mk.
引用
收藏
页码:1166 / 1174
页数:9
相关论文
共 14 条
[1]  
Bateman H, 1953, HIGH TRANSCENDENTAL
[2]  
Berezin I.S., 1965, COMPUTING METHODS
[3]   Non-self-adjoint differential operators [J].
Davies, EB .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 :513-532
[4]   DIFFERENTIAL-EQUATIONS IN THE SPECTRAL PARAMETER [J].
DUISTERMAAT, JJ ;
GRUNBAUM, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (02) :177-240
[5]  
HAGER M, 2002, ANN HENRI POINCARE, V7, P1035
[6]  
HERMITE Charles, 1878, Journalfur die reine und angewandte Mathematik, V84, P70
[7]   On the Uniqueness Criterion for Solutions of the Sturm-Liouville Equation [J].
Ishkin, Kh. K. .
MATHEMATICAL NOTES, 2008, 84 (3-4) :515-528
[8]   LOCALIZATION CRITERION FOR THE SPECTRUM OF THE STURM-LIOUVILLE OPERATOR ON A CURVE [J].
Ishkin, Kh. K. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2017, 28 (01) :37-63
[9]   On a trivial monodromy criterion for the Sturm-Liouville equation [J].
Ishkin, Kh K. .
MATHEMATICAL NOTES, 2013, 94 (3-4) :508-523
[10]   A localization criterion for the eigenvalues of a spectrally unstable operator [J].
Ishkin, Kh. K. .
DOKLADY MATHEMATICS, 2009, 80 (03) :829-832