AN APPLICATION OF A FIXED-POINT THEOREM TO NEUMANN PROBLEMS ON THE SIERPINSKI FRACTAL

被引:0
作者
Breckner, Brigitte E. [1 ]
Varga, Csaba [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Kogalniceanu Str 1, Cluj Napoca 400084, Romania
来源
FIXED POINT THEORY | 2018年 / 19卷 / 02期
关键词
Sierpinski gasket; harmonic extension procedure; Leray-Schauder continuation principle; Neumann problem on the Sierpinski gasket;
D O I
10.24193/fpt-ro.2018.2.38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prepare first the background for the study of Neumann problems on the Sierpinski fractal in the N-dimensional Euclidean space. Hereafter we apply the Leray-Schauder continuation principle to prove the existence of at least one solution of certain Neumann problems on this fractal.
引用
收藏
页码:475 / 486
页数:12
相关论文
共 11 条
[1]  
Bauer H., 2001, DEGRUYTER STUDIES MA, V26
[2]  
Breckner B. E., 2013, MATHEMATICA, V55, P142
[3]  
Breckner B. E., 2014, SPRINGER OPTIM APPL, V94, P119
[4]   The Laplace operator on the Sierpinski gasket with Robin boundary conditions [J].
Breckner, Brigitte E. ;
Chill, Ralph .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 :245-260
[5]   Non-linear elliptical equations on the Sierpinski gasket [J].
Falconer, KJ ;
Hu, JX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :552-573
[6]   HARMONIC CALCULUS ON PCF SELF-SIMILAR SETS [J].
KIGAMI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :721-755
[7]  
Kigami J., 1989, Jpn. J. Appl. Math., V6, P259, DOI [10.1007/hf03167882, DOI 10.1007/HF03167882]
[8]  
Kigami J., 2001, ANAL FRACTALS
[9]  
O'Regan D., 2001, THEOREMS LERAY SCHAD
[10]  
Strichartz R. S., 2006, DIFFERENTIAL EQUATIO