Effect of Applying Leakage Correction on rCBV Measurement Derived From DSC-MRI in Enhancing and Nonenhancing Glioma

被引:16
作者
Arzanforoosh, Fatemeh [1 ]
Croal, Paula L. [2 ,3 ]
van Garderen, Karin A. [1 ]
Smits, Marion [1 ]
Chappell, Michael A. [2 ,3 ,4 ]
Warnert, Esther A. H. [1 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands
[2] Univ Nottingham, Sch Med, Radiol Sci Mental Hlth & Clin Neurosci, Nottingham, England
[3] Univ Nottingham, Sch Med, Sir Peter Mansfield Imaging Ctr, Nottingham, England
[4] Univ Nottingham, NIHR Nottingham Biomed Res Ctr, Queens Med Ctr, Nottingham, England
来源
FRONTIERS IN ONCOLOGY | 2021年 / 11卷
基金
英国工程与自然科学研究理事会; 荷兰研究理事会;
关键词
dynamic susceptibility contrast (DSC); relative cerebral blood volume (rCBV); unidirectional leakage correction; bidirectional leakage correction; glioma; CEREBRAL BLOOD-VOLUME; PERFUSION; GRADE;
D O I
10.3389/fonc.2021.648528
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose Relative cerebral blood volume (rCBV) is the most widely used parameter derived from DSC perfusion MR imaging for predicting brain tumor aggressiveness. However, accurate rCBV estimation is challenging in enhancing glioma, because of contrast agent extravasation through a disrupted blood-brain barrier (BBB), and even for nonenhancing glioma with an intact BBB, due to an elevated steady-state contrast agent concentration in the vasculature after first passage. In this study a thorough investigation of the effects of two different leakage correction algorithms on rCBV estimation for enhancing and nonenhancing tumors was conducted. Methods Two datasets were used retrospectively in this study: 1. A publicly available TCIA dataset (49 patients with 35 enhancing and 14 nonenhancing glioma); 2. A dataset acquired clinically at Erasmus MC (EMC, Rotterdam, NL) (47 patients with 20 enhancing and 27 nonenhancing glial brain lesions). The leakage correction algorithms investigated in this study were: a unidirectional model-based algorithm with flux of contrast agent from the intra- to the extravascular extracellular space (EES); and a bidirectional model-based algorithm additionally including flow from EES to the intravascular space. Results In enhancing glioma, the estimated average contrast-enhanced tumor rCBV significantly (Bonferroni corrected Wilcoxon Signed Rank Test, p < 0.05) decreased across the patients when applying unidirectional and bidirectional correction: 4.00 +/- 2.11 (uncorrected), 3.19 +/- 1.65 (unidirectional), and 2.91 +/- 1.55 (bidirectional) in TCIA dataset and 2.51 +/- 1.3 (uncorrected), 1.72 +/- 0.84 (unidirectional), and 1.59 +/- 0.9 (bidirectional) in EMC dataset. In nonenhancing glioma, a significant but smaller difference in observed rCBV was found after application of both correction methods used in this study: 1.42 +/- 0.60 (uncorrected), 1.28 +/- 0.46 (unidirectional), and 1.24 +/- 0.37 (bidirectional) in TCIA dataset and 0.91 +/- 0.49 (uncorrected), 0.77 +/- 0.37 (unidirectional), and 0.67 +/- 0.34 (bidirectional) in EMC dataset. Conclusion Both leakage correction algorithms were found to change rCBV estimation with BBB disruption in enhancing glioma, and to a lesser degree in nonenhancing glioma. Stronger effects were found for bidirectional leakage correction than for unidirectional leakage correction.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Analysis of postprocessing steps for residue function dependent dynamic susceptibility contrast (DSC)-MRI biomarkers and their clinical impact on glioma grading for both 1.5 and 3T [J].
Bell, Laura C. ;
Stokes, Ashley M. ;
Quarles, C. Chad .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (02) :547-553
[2]   T1- and T2*-dominant extravasation correction in DSC-MRI: Part I-theoretical considerations and implications for assessment of tumor hemodynamic properties [J].
Bjornerud, Atle ;
Sorensen, A. Gregory ;
Mouridsen, Kim ;
Emblem, Kyrre E. .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2011, 31 (10) :2041-2053
[3]   Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas [J].
Boxerman, Jerrold L. ;
Quarles, Chad C. ;
Hu, Leland S. ;
Erickson, Bradley J. ;
Gerstner, Elizabeth R. ;
Smits, Marion ;
Kaufmann, Timothy J. ;
Barboriak, Daniel P. ;
Huang, Raymond H. ;
Wick, Wolfgang ;
Weller, Michael ;
Galanis, Evanthia ;
Kalpathy-Cramer, Jayashree ;
Shankar, Lalitha ;
Jacobs, Paula ;
Chung, Caroline ;
van den Bent, Martin J. ;
Chang, Susan ;
Al Yung, W. K. ;
Cloughesy, Timothy F. ;
Wen, Patrick Y. ;
Gilbert, Mark R. ;
Rosen, Bruce R. ;
Ellingson, Benjamin M. ;
Schmainda, Kathleen M. .
NEURO-ONCOLOGY, 2020, 22 (09) :1262-1275
[4]  
Boxerman JL, 2006, AM J NEURORADIOL, V27, P859
[5]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[6]  
COVARRUBIAS D, 2004, ONCOLOGIST
[7]   Impact of Software Modeling on the Accuracy of Perfusion MRI in Glioma [J].
Hu, L. S. ;
Kelm, Z. ;
Korfiatis, P. ;
Dueck, A. C. ;
Elrod, C. ;
Ellingson, B. M. ;
Kaufmann, T. J. ;
Eschbacher, J. M. ;
Karis, J. P. ;
Smith, K. ;
Nakaji, P. ;
Brinkman, D. ;
Pafundi, D. ;
Baxter, L. C. ;
Erickson, B. J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (12) :2242-2249
[8]   Correlations between Perfusion MR Imaging Cerebral Blood Volume, Microvessel Quantification, and Clinical Outcome Using Stereotactic Analysis in Recurrent High-Grade Glioma [J].
Hu, L. S. ;
Eschbacher, J. M. ;
Dueck, A. C. ;
Heiserman, J. E. ;
Liu, S. ;
Karis, J. P. ;
Smith, K. A. ;
Shapiro, W. R. ;
Pinnaduwage, D. S. ;
Coons, S. W. ;
Nakaji, P. ;
Debbins, J. ;
Feuerstein, B. G. ;
Baxter, L. C. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (01) :69-76
[9]   Optimized Preload Leakage-Correction Methods to Improve the Diagnostic Accuracy of Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging in Posttreatment Gliomas [J].
Hu, L. S. ;
Baxter, L. C. ;
Pinnaduwage, D. S. ;
Paine, T. L. ;
Karis, J. P. ;
Feuerstein, B. G. ;
Schmainda, K. M. ;
Dueck, A. C. ;
Debbins, J. ;
Smith, K. A. ;
Nakaji, P. ;
Eschbacher, J. M. ;
Coons, S. W. ;
Heiserman, J. E. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2010, 31 (01) :40-48
[10]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+