Adaptive finite element method for nonmonotone quasi-linear elliptic problems

被引:2
作者
Guo, Liming [1 ]
Bi, Chunjia [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive finite element method; Convergence; Quasi-optimality; Nonmonotone; Quasi-linear elliptic problems; POSTERIORI ERROR ESTIMATION; OPTIMAL CONVERGENCE RATE; OPTIMALITY; EQUATIONS;
D O I
10.1016/j.camwa.2021.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the simplest and the most standard adaptive finite element method for the secondorder nonmonotone quasi-linear elliptic problems with the exact solution u epsilon H-0(1+alpha) (Omega), alpha >= 1/2. The adaptive algorithm is based on the residual-based a posteriori error estimators and Dorfler's marking strategy. We prove the convergence and quasi-optimality of the adaptive finite element method when the initial mesh is sufficiently fine. Numerical experiments are provided to illustrate our findings.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
[41]   Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term [J].
Boccardo, L ;
De León, SS ;
Trombetti, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (09) :919-940
[42]   Multilevel correction goal-oriented adaptive finite element method for semilinear elliptic equations [J].
Xu, Fei ;
Huang, Qiumei ;
Yang, Huiting ;
Ma, Hongkun .
APPLIED NUMERICAL MATHEMATICS, 2022, 172 :224-241
[43]   FOURTH-ORDER COMPACT FINITE DIFFERENCE METHODS AND MONOTONE ITERATIVE ALGORITHMS FOR QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS [J].
Wang, Yuan-Ming .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :1032-1057
[44]   Convergence and quasi-optimality of an adaptive finite element method for elliptic Robin boundary control problem [J].
Shen, Yue ;
Yan, Ningning ;
Zhou, Zhaojie .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 356 :1-21
[45]   A difference finite element method based on nonconforming finite element methods for 3D elliptic problems [J].
Song, Jianjian ;
Sheen, Dongwoo ;
Feng, Xinlong ;
He, Yinnian .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2025, 51 (01)
[46]   Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems [J].
Xie, Yingying ;
Zhong, Liuqiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (01)
[47]   CONVERGENCE AND QUASI-OPTIMALITY OF L2-NORMS BASED AN ADAPTIVE FINITE ELEMENT METHOD FOR NONLINEAR OPTIMAL CONTROL PROBLEMS [J].
Lu, Zuliang ;
Huang, Fei ;
Wu, Xiankui ;
Li, Lin ;
Liu, Shang .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (04) :1459-1486
[48]   Superconvergence of a Nonconforming Interface Penalty Finite Element Method for Elliptic Interface Problems [J].
He, Xiaoxiao .
AXIOMS, 2025, 14 (05)
[49]   A new space transformed finite element method for elliptic interface problems in Rn [J].
Bandha, Raghunath ;
Sinha, Rajen Kumar .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
[50]   A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems [J].
Lin, Tao ;
Sheen, Dongwoo ;
Zhang, Xu .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 79 (01) :442-463