Adaptive finite element method for nonmonotone quasi-linear elliptic problems

被引:2
作者
Guo, Liming [1 ]
Bi, Chunjia [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive finite element method; Convergence; Quasi-optimality; Nonmonotone; Quasi-linear elliptic problems; POSTERIORI ERROR ESTIMATION; OPTIMAL CONVERGENCE RATE; OPTIMALITY; EQUATIONS;
D O I
10.1016/j.camwa.2021.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the simplest and the most standard adaptive finite element method for the secondorder nonmonotone quasi-linear elliptic problems with the exact solution u epsilon H-0(1+alpha) (Omega), alpha >= 1/2. The adaptive algorithm is based on the residual-based a posteriori error estimators and Dorfler's marking strategy. We prove the convergence and quasi-optimality of the adaptive finite element method when the initial mesh is sufficiently fine. Numerical experiments are provided to illustrate our findings.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
[31]   Adaptive Multilevel Correction Method for Finite Element Approximations of Elliptic Optimal Control Problems [J].
Wei Gong ;
Hehu Xie ;
Ningning Yan .
Journal of Scientific Computing, 2017, 72 :820-841
[32]   Weighted p-Laplace approximation of linear and quasi-linear elliptic problems with measure data [J].
Eymard, Robert ;
Maltese, David ;
Prignet, Alain .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 330 :208-236
[33]   Infinitely Many Solutions for a Class of Quasi-linear Elliptic Problem [J].
Jia, Xiao-yao ;
Lou, Zhen-luo .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (03) :728-743
[34]   A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS [J].
Deng, Weibing ;
Wu, Haijun .
MULTISCALE MODELING & SIMULATION, 2014, 12 (04) :1424-1457
[35]   AN IMPROVED METHOD FOR SOLVING QUASI-LINEAR CONVECTION DIFFUSION PROBLEMS ON A COARSE MESH [J].
Pollock, Sara .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (02) :A1121-A1145
[36]   Goal-oriented adaptive finite element methods for elliptic problems revisited [J].
Buerg, Markus ;
Nazarov, Murtazo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 287 :125-147
[37]   MULTILEVEL CORRECTION ADAPTIVE FINITE ELEMENT METHOD FOR SEMILINEAR ELLIPTIC EQUATION [J].
Lin, Qun ;
Xie, Hehu ;
Xu, Fei .
APPLICATIONS OF MATHEMATICS, 2015, 60 (05) :527-550
[38]   Adaptive Quasi-Monte Carlo Finite Element Methods for Parametric Elliptic PDEs [J].
Longo, Marcello .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
[39]   ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS [J].
Bonito, Andrea ;
Devore, Ronald A. ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) :3106-3134
[40]   An adaptive discontinuous finite volume method for elliptic problems [J].
Liu, Jiangguo ;
Mu, Lin ;
Ye, Xiu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (18) :5422-5431