Adaptive finite element method for nonmonotone quasi-linear elliptic problems

被引:2
作者
Guo, Liming [1 ]
Bi, Chunjia [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive finite element method; Convergence; Quasi-optimality; Nonmonotone; Quasi-linear elliptic problems; POSTERIORI ERROR ESTIMATION; OPTIMAL CONVERGENCE RATE; OPTIMALITY; EQUATIONS;
D O I
10.1016/j.camwa.2021.03.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the simplest and the most standard adaptive finite element method for the secondorder nonmonotone quasi-linear elliptic problems with the exact solution u epsilon H-0(1+alpha) (Omega), alpha >= 1/2. The adaptive algorithm is based on the residual-based a posteriori error estimators and Dorfler's marking strategy. We prove the convergence and quasi-optimality of the adaptive finite element method when the initial mesh is sufficiently fine. Numerical experiments are provided to illustrate our findings.
引用
收藏
页码:94 / 105
页数:12
相关论文
共 50 条
[21]   Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint [J].
Haitao Leng ;
Yanping Chen .
Advances in Computational Mathematics, 2018, 44 :367-394
[22]   ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS: ABSTRACT FRAMEWORK AND APPLICATIONS [J].
Nicaise, Serge ;
Cochez-Dhondt, Sarah .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (03) :485-508
[23]   Convergence and Quasi-Optimality of an Adaptive Finite Element Method for Optimal Control Problems on Errors [J].
Leng, Haitao ;
Chen, Yanping .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) :438-458
[24]   MATERIAL AND SHAPE DERIVATIVE METHOD FOR QUASI-LINEAR ELLIPTIC SYSTEMS WITH APPLICATIONS IN INVERSE ELECTROMAGNETIC INTERFACE PROBLEMS [J].
Cimrak, Ivan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1086-1110
[25]   Mixed covolume methods for quasi-linear second-order elliptic problems [J].
Kwak, DY ;
Kim, KY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) :1057-1072
[26]   On the symmetry of minimizers in constrained quasi-linear problems [J].
Squassina, Marco .
ADVANCES IN CALCULUS OF VARIATIONS, 2011, 4 (04) :339-362
[27]   Sharp regularity estimates for quasi-linear elliptic dead core problems and applications [J].
Vitor da Silva, Joao ;
Salort, Ariel M. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
[28]   A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS [J].
Hong, Qichen ;
Xie, Hehu ;
Xu, Fei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) :A4208-A4235
[29]   An Adaptive Finite Element PML Method for the Open Cavity Scattering Problems [J].
Chen, Yanli ;
Li, Peijun ;
Yuan, Xiaokai .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (05) :1505-1540
[30]   Regularity and an adaptive finite element method for elliptic equations with Dirac sources on line cracks [J].
Cao, Huihui ;
Li, Hengguang ;
Yi, Nianyu ;
Yin, Peimeng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462